Abstract:
In a free space communication network in which different communication nodes are linked together by directed beams, a method for dynamically configuring the topology of the network allows the transmission directions of the communication nodes to be autonomously changed to communicate with a new node as dictated by the needs of the network. Moreover, the nodes can be switched from directional to broadcast and back again on an as-needed basis. The network consists of a topology that can be rapidly and physically reconfigured as required to provide multiple connectivity, a desired quality of service, or to compensate with the loss of communication links between nodes. The loss of direct communication between any two nodes in an optical network can occur because of obscuration of the atmospheric path between the two nodes. The directed beam which provides the communication channel between the two nodes can, in this situation, be steered to direct its energy towards another accessible node.
Abstract:
A method of forming a fiber probe having an aperture for use in near-field scanning optical microscopy. The method includes a first steps of coating an optical fiber having a tapered tip with a metal layer. Next is a step of milling the tapered tip and metal layer such that an aperture is formed through the metal layer at the tapered tip. The milling step includes focused ion-beam milling the tapered tip and metal layer. The focused ion-beam milling can be done by raster scanning the focused ion-beam in a rectangular pattern at an apex of the tapered tip. Also, the fiber probe made through the above outlined method is used in near-field scanning optical microscopy.
Abstract:
An identification apparatus, capable of distinguishing between a first class of objects and a second class of objects. This identification apparatus includes an identification tag, which is capable of providing a certain reflection band and a certain thermal emission band. The identification apparatus also includes a thermal weapon sight which has a long-wave infrared band-pass filter. This band-pass filter passes through a desired range of wavelengths and filters out an undesired range of wavelengths. The reflection band and the thermal emission band are detectable within the desired range of wavelengths.
Abstract:
Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
Abstract:
Implementing a layered hyperbolic metamaterial in a vertical cavity surface emitting laser (VCSEL) to improve thermal conductivity and thermal dissipation thereby stabilizing optical performance. Improvement in the thermal management and power is expected by replacing the distributed Bragg reflector (DBR) mirrors in the VCSEL. The layered metamaterial structure performs the dual function of the DBR and the heat spreader at the same time.
Abstract:
A far-field optical microscope capable of reaching nanometer-scale resolution using the in-plane image magnification by surface plasmon polaritons is presented. The microscope utilizes a microscopy technique based on the optical properties of a metal-dielectric interface that may, in principle, provide extremely large values of the effective refractive index neff up to 102-103 as seen by the surface plasmons. Thus, the theoretical diffraction limit on resolution becomes λ/2neff, and falls into the nanometer-scale range. The experimental realization of the microscope has demonstrated the optical resolution better than 50 nm for 502 nm illumination wavelength.
Abstract:
A method for carrying out electromagnetic cloaking using metamaterial devices requiring anisotropic dielectric permittivity and magnetic permeability may be emulated by specially designed tapered waveguides. This approach leads to low-loss, broadband performance in the visible frequency range, which is difficult to achieve by other means. We apply this technique to electromagnetic cloaking. A broadband, two-dimensional, electromagnetic cloaking is demonstrated in the visible frequency range on a scale ˜100 times the wavelength. Surprisingly, the classic geometry of Newton rings is suited for an experimental demonstration of this effect.
Abstract:
A method of achieving electromagnetic cloaking of an object comprising the step of coating said object with a metal-dielectric composite material including a dielectric component, wherein the dielectric component is comprised of a material exhibiting anomalous dispersion in a wide wavelength range.
Abstract:
Plasmonic systems and devices that utilize surface plasmon polaritons (or “plasmons”) for inter-chip and/or intra-chip communications are provided. A plasmonic system includes a microchip that has an integrated circuit module and a plasmonic device configured to interface with the integrated circuit module. The plasmonic device includes a first electrode, a second electrode positioned at a non-contact distance from the first electrode, and a tunneling-junction configured to create a plasmon when a potential difference is created between the first electrode and the second electrode.
Abstract:
A lens with a graded index of refraction is presented. The lens is formed out of a sheet of material having a uniform thickness with a top surface and a bottom surface. Elongated openings are formed in the top surface extending downwardly to the bottom surface. Material of the elongated sheet is left between adjacent openings. A width of the material between adjacent openings is less than a wavelength of electromagnet energy the lens is configured to refract. The density and distribution openings varies across the sheet of material so that the refractive index of the lens varies across the sheet of material.