Abstract:
A curved passage constituting part of an exhaust gas recirculation passage is installed inside a suction passage in the downstream of an electronic control throttle valve, of which initial position is the fully opened position, and an exhaust gas recirculation flow control valve is installed in the cylindrical portion extending coaxially from the curved passage into a suction passage. The control valve is a butterfly valve driven by a motor via a reduction gear mechanism. In addition, the control valve opening is sensed by a sensor and cooled exhaust gas flow is sensed by a flow sensor at the outlet of an exhaust gas cooler, and the control of the control valve is based on these sensor signals.
Abstract:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
Abstract:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
Abstract:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
Abstract:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
Abstract:
An air passage 2 is provided with an air passage groove 5 that supplies a required volume of air to the side downstream from the fully closed position of a valve body for control purposes. Further, a taper is formed in such a way that a predetermined volume of air can be supplied, even if positional variations have occurred to the valve body. This arrangement allows the volume of air required for the traveling of a car to be supplied, without increasing the number of parts, even if the valve body 3 has stuck downstream from the controlled area. This arrangement also permits a stable supply of air flow at the idle position of the valve body.
Abstract:
An optical disc recording/reproducing apparatus is provided which can obtain the best recording quality. Data is recorded while tracking is displaced by gradually supplying an offset voltage (deviation value) to a tracking error signal, and then reproduction is performed on a recording area. The jitter value (reading state of address information) of biphase data generated from a reproduction RF signal is detected by a biphase jitter detector (20). Further, on the basis of the offset voltage value (tracking deviation) supplied to the tracking error signal and the detected jitter value of the biphase data, a CPU (14) determines an offset voltage value where the biphase data has the minimum jitter value, as a tracking deviation for obtaining the best reading state of data, and records the offset voltage value in memory (15).
Abstract:
A curved passage constituting part of an exhaust gas recirculation passage is installed inside a suction passage in the downstream of an electronic control throttle valve, of which initial position is the fully opened position, and an exhaust gas recirculation flow control valve is installed in the cylindrical portion extending coaxially from the curved passage into a suction passage. The control valve is a butterfly valve driven by a motor via a reduction gear mechanism. In addition, the control valve opening is sensed by a sensor and cooled exhaust gas flow is sensed by a flow sensor at the outlet of an exhaust gas cooler, and the control of the control valve is based on these sensor signals.
Abstract:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
Abstract:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.