摘要:
A solid state relay composed of a series connected pair of LDMOSFETs has a minimized output capacitance. Each LDMOSFET is configured to have a silicon layer of a first conductive type, a drain region of the first conductive type diffused in the top surface of the silicon layer, a well region of a second conductive type diffused in the silicon layer in a laterally spaced relation from the drain region, and a source region of the first conductive type diffused within the well region to define a channel extending between the source region and a confronting edge of the well region along the top surface of the silicon layer. Each LDMOSFET is of an SOI (Silicon-On-Insulator) structure composed of a silicon substrate placed on a supporting plate, a buried oxide layer on the silicon substrate, and the silicon layer on the buried oxide layer. The well region is diffused over the full depth of the silicon layer to have its bottom in contact with the buried oxide layer, so that the well region forms with the silicon layer a P-N interface only at a small area adjacent the channel. Because of this reduced P-N interface and also because of the buried oxide layer exhibiting a much lower inductive capacitance than the silicon layer, it is possible to greatly reduce a drain-source capacitance for minimizing the output capacitance of the relay in the non-conductive condition.
摘要:
The organic electroluminescent device includes: a first electrode of conductive and light transmissive material; a light emitting layer of organic material on the first electrode; a second electrode of conductive material on the layer; first and second terminal parts placed on first and second ends of the layer in a first direction crossing a thickness direction of the layer and coupled to the first and second electrodes, respectively; and an auxiliary electrode which is on the first electrode and beside the layer in a second direction crossing the thickness direction and the first direction and coupled to the first electrode, and has an elongated shape extending in the first direction, and made of material having specific resistance smaller than the first electrode, and includes portions with different thicknesses such that sheet resistance is increased with an increase in distance from the first terminal part in a lengthwise direction thereof.
摘要:
A highly sensitive and compactable target substance sensor for detection of the target substance using a photonic crystal and a method thereof. The sensor includes an electromagnetic wave source of supplying an electromagnetic wave, a photonic sensor element, and a detector. The photonic sensor element has photonic crystalline structure and is configured to include a sensor waveguide for introducing the electromagnetic wave, and a sensing resonator electromagnetically coupled to the sensor waveguide for resonating the electromagnetic wave at specific wavelength. The sensing resonator is exposed to an atmosphere including the target substance so as to vary a characteristic of the electromagnetic wave emitted from the sensing resonator. The detector is configured to receive the electromagnetic wave emitted from the sensing resonator to recognize an intensity variation of the electromagnetic wave and issue a signal indicative of a characteristic of the target substance.
摘要:
A highly sensitive and compactible target substance sensor for detection of the target substance using a photonic crystal and a method thereof are provided.The sensor of the present invention includes an electromagnetic wave source of supplying an electromagnetic wave, a photonic sensor element, and a detector. The photonic sensor element has photonic crystalline structure and is configured to include a sensor waveguide for introducing the electromagnetic wave, and a sensing resonator electromagnetically coupled to the sensor waveguide for resonating the electromagnetic wave at specific wavelength. The sensing resonator is exposed to an atmosphere including the target substance so as to vary a characteristic of the electromagnetic wave emitted from the sensing resonator. The detector is configured to receive the electromagnetic wave emitted from the sensing resonator to recognize an intensity variation of the electromagnetic wave and issue a signal indicative of a characteristic of the target substance.
摘要:
A thin film transistor of SOI (Silicon-On-Insulator) type includes a buried oxide layer formed on a semiconductor substrate, a silicon layer of a first conductive type formed on the buried oxide layer, and an upper oxide layer formed on the silicon layer. The silicon layer has a body region of a second conductive type, source region of the first conductive type, drain region of the first conductive type, and a drift region of the first conductive type. The silicon layer is formed with a first portion of a thickness T1 in which the doping region is formed, and a second portion of a thickness T2 in which the body region is formed to reach the buried oxide layer. When the thicknesses T1 and T2 are determined so as to satisfy the relationships: 0.4 .mu.m
摘要:
The organic electroluminescent device includes: a first electrode of conductive and light transmissive material; a light emitting layer of organic material on the first electrode; a second electrode of conductive material on the layer; first and second terminal parts placed on first and second ends of the layer in a first direction crossing a thickness direction of the layer and coupled to the first and second electrodes, respectively; and an auxiliary electrode which is on the first electrode and beside the layer in a second direction crossing the thickness direction and the first direction and coupled to the first electrode, and has an elongated shape extending in the first direction, and made of material having specific resistance smaller than the first electrode, and includes portions with different thicknesses such that sheet resistance is increased with an increase in distance from the first terminal part in a lengthwise direction thereof.
摘要:
In this electromagnetic wave frequency filter, an electromagnetic wave of a predetermined frequency matching a resonant frequency of a resonator 41 is transmitted from an input waveguide 2 to an output waveguide 3 through the resonator 41, and is outputted from a drop port P31. This filter has an input-waveguide-side reflector 211 and an output-waveguide-side reflector 311, which reflect the electromagnetic wave of the predetermined frequency. The electromagnetic wave frequency filter satisfies the following relation: Qinb/(1−cos θ1)
摘要:
To provide a semiconductor device having a large allowable current, a demanded withstand voltage, and small output capacitance and resistance, the semiconductor device comprises a semiconductor layer formed on a semiconductor substrate, and the semiconductor layer includes a first conductivity type-drain region, a second conductivity type-well region apart from the drain region, a first conductivity type-source region in the well region apart from one end of the well region on the side of the drain region, a first conductivity type-drift region formed between one end of the well region and the drain region and in contact with the well region and the drain region, respectively, and a gate electrode formed spaced a gate oxide layer and on the well region located between the drift region and the source region; and the impurity concentration of the drift region decreases in the lateral direction and also in the vertical direction, respectively, as the distance from the drain region increases.
摘要:
In this electromagnetic wave frequency filter, an electromagnetic wave of a predetermined frequency matching a resonant frequency of a resonator 41 is transmitted from an input waveguide 2 to an output waveguide 3 through the resonator 41, and is outputted from a drop port P31. This filter has an input-waveguide-side reflector 211 and an output-waveguide-side reflector 311, which reflect the electromagnetic wave of the predetermined frequency. The electromagnetic wave frequency filter satisfies the following relation: Qinb/(1−cos θ1)
摘要:
The present invention aims to provide an electromagnetic wave frequency filter capable of transmitting an electromagnetic wave having a predetermined frequency between two waveguides with a high level of efficiency. This object is achieved by the following construction: A resonator 15 that resonates with the electromagnetic wave having the predetermined frequency is located between an input waveguide 13 and an output waveguide 14 and close to the two waveguides. The output waveguide 14 is designed so that it extends parallel to the input waveguide 13 within a predetermined section 18 located in proximity to the resonator 15, and its distance from the input waveguide 13 in the other section is larger than that in the predetermined section 18. This construction allows the electromagnetic wave having the predetermined frequency to be transmitted between the input waveguide 13 and the output waveguide 14 via the resonator 15, while preventing the other electromagnetic waves having different frequencies from being transmitted between the input waveguide 13 and the output waveguide 14 outside of the predetermined section 18. The present electromagnetic wave frequency filter can be preferably constructed using a two-dimensional photonic crystal.