摘要:
A polyamide molding material is proposed, which comprises at least one partially crystalline, partially aromatic polyamide (A) and at least one amorphous polyamide (B). The polyamides (A) and (B) together make up 30-60 wt.-% of the polyamide molding material. Furthermore, the polyamide molding material comprises 40-70 wt.-% glass fibers (C) having flat cross section, 0-15 wt.-% of at least one nonhalogenated flame retardant (D), and 0-10 wt.-% further additives (E), the components (A) to (E) adding up to 100 wt.-% of the polyamide molding material. The at least one partially crystalline, partially aromatic polyamide (A) has a glass transition temperature of at least 105° C. The polyamide molding material according to the invention is preferably distinguished in an injection-molding burr formation test in that, at a melt temperature of 320° C. and a tool temperature of 90° C., and a dynamic pressure of 100 bar and a holding pressure of 400 bar, at the flow path end of a mold arm having a vent gap dimension of 30 μm, burrs having a length G of at most 30 μm result. Such a polyamide molding material results in molded parts having good surface quality and low warpage when injection molded and is suitable for the production of housings or housing parts of electrical and electronic devices.
摘要:
A polyamide molding material is proposed, which comprises at least one partially crystalline, partially aromatic polyamide (A) and at least one amorphous polyamide (B). The polyamides (A) and (B) together make up 30-60 wt.-% of the polyamide molding material. Furthermore, the polyamide molding material comprises 40-70 wt.-% glass fibers (C) having flat cross section, 0-15 wt.-% of at least one nonhalogenated flame retardant (D), and 0-10 wt.-% further additives (E), the components (A) to (E) adding up to 100 wt.-% of the polyamide molding material. The at least one partially crystalline, partially aromatic polyamide (A) has a glass transition temperature of at least 105° C. The polyamide molding material according to the invention is preferably distinguished in an injection-molding burr formation test in that, at a melt temperature of 320° C. and a tool temperature of 90° C., and a dynamic pressure of 100 bar and a holding pressure of 400 bar, at the flow path end of a mold arm having a vent gap dimension of 30 μm, burrs having a length G of at most 30 μm result. Such a polyamide molding material results in molded parts having good surface quality and low warpage when injection molded and is suitable for the production of housings or housing parts of electrical and electronic devices.