摘要:
An information readout method for an optical information medium comprising an information recording layer having pits or recorded marks representative of information data involves the step of irradiating a laser beam to the information recording layer through an objective lens for providing readings of the pits or recorded marks. When the laser beam has a wavelength λ of 400 to 410 nm, the objective lens has a numerical aperture NA of 0.70 to 0.85, and the pits or recorded marks have a minimum size PL of up to 0.36λ/NA, readout is carried out at a power Pr of at least 0.4 mW for the laser beam. When the laser beam has a wavelength λ of 630 to 670 nm, the objective lens has a numerical aperture NA of 0.60 to 0.65, and the pits or recorded marks have a minimum size PL of up to 0.36λ/NA, readout is carried out at a power Pr of at least 1.0 mW for the laser beam. Pits or recorded marks of a size approximate to the resolution limit determined by diffraction can be read out at a high C/N.
摘要:
An optical head device (optical head) for a multi-layered optical recording medium has a focus control mechanism that makes use of astigmatism. The focus control mechanism has a sensor lens that includes a cylindrical lens. The focus control mechanism causes a light beam having passed through the sensor lens to have astigmatism, thereby being focused linearly in the Y direction on a front focal line located closer to the sensor lens and focused linearly in the X direction at a rear focal line located farther therefrom. The optical head also includes a photodetector which is disposed between the front focal line and the rear focal line to detect a focal position from the shape of a light beam. At the position of the front focal line, a shield plate with a window portion is disposed. The window portion has a size so as to allow the focal line to pass therethrough and shield stray light reflected from an unfocused recording layer.
摘要:
An information readout method for an optical information medium comprising an information recording layer having pits or recorded marks representative of information data involves the step of irradiating a laser beam to the information recording layer through an objective lens for providing readings of the pits or recorded marks. When the laser beam has a wavelength λ of 400 to 410 nm, the objective lens has a numerical aperture NA of 0.70 to 0.85, and the pits or recorded marks have a minimum size PL of up to 0.36λ/NA, readout is carried out at a power Pr of at least 0.4 mW for the laser beam. When the laser beam has a wavelength λ of 630 to 670 nm, the objective lens has a numerical aperture NA of 0.60 to 0.65, and the pits or recorded marks have a minimum size PL of up to 0.36λ/NA, readout is carried out at a power Pr of at least 1.0 mW for the laser beam. Pits or recorded marks of a size approximate to the resolution limit determined by diffraction can be read out at a high C/N.
摘要:
An optical recording medium is provided which includes two or more information layers in which an Sb-based eutectic material is used as the material for a recording film of a translucent information layer. There is also provided a recording film material for the optical recording medium. The translucent information layer is configured to include a recording film formed of a phase change material SbxGeyInz containing Sb, Ge, and In in an atomic ratio of x:y:z, where 5≦y≦15 and 4≦z≦15 are satisfied. The recording film further includes Te in an atomic ratio of a, provided that x+y+z+a=100 and 4≦a≦15 are satisfied. An interface layer formed of a ZrO2—Cr2O3 film having a thickness of 2 nm or more and 10 nm or less is provided on the laser beam incident side of the recording film. When the compositional ratio of the ZrO2—Cr2O3 film is given by ZrO2:Cr2O3=B:C (mol %), 20≦B≦90, 10≦C≦80, and B+C=100 are satisfied.
摘要翻译:提供了一种光记录介质,其包括其中使用Sb基共晶材料作为半透明信息层的记录膜的材料的两个或更多个信息层。 还提供了一种用于光学记录介质的记录膜材料。 半透明信息层被配置为包括由包含Sb,Ge和Sb的相变材料Sb x Sub x Z z形成的记录膜;以及 在x:y:z的原子比中,其中5 <= y <= 15且4 <= z <= 15。 如果满足x + y + z + a = 100和4 <= a <= 15,则记录膜还包括原子比a的Te。 提供由厚度为2nm以上且10nm以下的ZrO 2·2L 2 O 3·3膜形成的界面层 在记录膜的激光束入射侧。 当ZrO 2→2→2→3 <3>膜的组成比由ZrO 2:Cr: B = C(摩尔%),20 <= B <= 90,10 <= C <= 80,B + C = 100。
摘要:
A next-generation optical recording medium has two or more information layers which include a translucent information layer. The translucent information layer has a recording film and an interface layer, provided adjacent to the recording film on the side of the light incident surface. The recording film is made of a phase change material having SbxTeyGez elements and elemental ratios. Y satisfies 5≦y≦15 and z satisfies 5≦z≦15. When In having an elemental ratio of a is further added and x+y+z+a=100 holds, a satisfies 4≦a≦15. The interface layer comprises of ZrO2—Cr2O3 film thickness of which is in a range of from 2 nm to 10 nm. When ZrO2:Cr2O3═C:D (mol %), the compositional ratios ZrO2 and Cr2O3 in the ZrO2—Cr2O3 film, holds, the C satisfies 20≦C≦90, and the D satisfies 10≦D≦80, and the C and the D satisfy C+D=100. The ZrO2 is stabilized ZrO2 which contains Y2O3, when ZrO2:Y2O3=(100-X):X (mol %), the compositional ratios ZrO2 and Y2O3 in the stabilized ZrO2, holds, the X satisfies 2≦X≦10.
摘要翻译:下一代光记录介质具有包括半透明信息层的两个或多个信息层。 半透明信息层具有记录膜和界面层,与光入射表面侧的记录膜相邻。 该记录膜由具有Sb x Si x Y y z z z元素和元素比的相变材料制成。 Y满足5 <= y <= 15,z满足5 <= z <= 15。 当进一步添加具有a的元素比率的In并且x + y + z + a = 100成立时,满足4 <= a <= 15。 界面层包含ZrO 2→2→2→3→3→3膜,其膜厚在2nm至10nm的范围内。 当ZrO 2:Cr 2 O 3 -C(D)(摩尔%)时,组成比ZrO 2 < 和ZrO 2 -r 2 O 3 O 3膜中的Cr 2 O 3 O 3 满足20 <= C <= 90,D满足10 <= D <= 80,C和D满足C + D = 100。 当ZrO 2 2时,ZrO 2 2是稳定的含有Y 2 O 3 O 3的ZrO 2 SUB> (100-X):X(摩尔%),组成比ZrO 2和Y 2 O> 3 <3>,X满足2 <= X <= 10。
摘要:
An optical information recording medium which is capable of performing high-density recording of record data, and storing the recorded data for a long time period such that the recorded data can be normally reproduced during the long time period. An optical information recording medium has a recording layer formed on a substrate, for having a laser beam irradiated thereto for recording and reproduction of record data. The recording layer includes a first sub-recording film and a second sub-recording film. The first sub-recording film is formed of a first material containing Si as the main component. The second sub-recording film is formed of a second material containing Cu as the main component and having Au added thereto, and disposed in the vicinity of the first recording film.
摘要:
An optical information recording medium which makes it possible to reduce the noise level and improve the C/N ratio. An optical information recording medium has a recording layer formed on a substrate, for having a laser beam irradiated thereto for recording and reproduction of record data. The recording layer includes a first sub-recording film and a second sub-recording film. The first sub-recording film is formed of a first material containing Si as the main component. The second sub-recording film is formed of a second material containing Zn as the main component and having Cu added thereto, and disposed in the vicinity of the first recording film. The laser beam is irradiated to the recording layer via a light transmitting layer formed in a manner covering the recording layer side.
摘要:
The present invention relates to a method for processing a photoresist-coated board, a method for manufacturing a stamper for a recording medium and a method for manufacturing a recording medium which can form a fine raised and depressed pattern having a uniform width after development even in the case where a laser beam having a relatively long wavelength is used for forming pre-pits on a recording medium with high accuracy. A photoresist-coated board 108 is constituted by laminating a light absorption layer 108b and a photosensitive material layer 108c on a glass substrate 108a in this order and is exposed to a laser beam 102 by condensing the laser beam 102 onto the photosensitive material layer 108c, thereby forming a raised and depressed pattern corresponding to pre-pits on the the photosensitive material layer 108. When the length of a pre-pit to be formed is shorter than 4 T, for example, the duty ratio of the pulse signal train input to the light modulator 109 is varied within a range from about 50% to 65% so that a pulse signal train having a higher duty ratio is generated as the length of a pre-pit to be formed becomes longer and the power of a laser beam is modulated by the thus generated pulse signal train. On the other hand, when the length of a pre-pit to be formed is equal to or longer than 4 T, for example, a pulse signal train having a constant duty ratio is generated independently of the length of the pre-pit to be formed and the power of a laser beam is modulated by the thus generated pulse signal train.
摘要:
An optical information recording medium which is capable of performing high-density recording of record data, and storing the recorded data for a long time period such that the recorded data can be normally reproduced during the long time period. An optical information recording medium has a recording layer formed on a substrate, for having a laser beam irradiated thereto for recording and reproduction of record data. The recording layer includes a first sub-recording film and a second sub-recording film. The first sub-recording film is formed of a first material containing Si as the main component. The second sub-recording film is formed of a second material containing Cu as the main component and having Zn added thereto, and disposed in the vicinity of the first recording film.
摘要:
An optical information recording medium which is capable of performing high-density recording of record data, and storing the recorded data for a long time period such that the recorded data can be normally reproduced during the long time period. An optical information recording medium has a recording layer formed on a substrate, for having a laser beam irradiated thereto for recording and reproduction of record data. The recording layer includes a first sub-recording film and a second sub-recording film. The first sub-recording film is formed of a first material containing Si as the main component. The second sub-recording film is formed of a second material containing Cu as the main component and having Mg added thereto, and disposed in the vicinity of the first recording film.