Abstract:
A thermal hydrocarbon recovery apparatus comprises: a plurality of steam injector tubes each provided with a plurality of injector autonomous inflow control devices, AICDs, spaced apart from each other along the length of each steam injector tube; a plurality of production tubes each provided with a plurality of production autonomous inflow control devices, AICDs, spaced apart from each other along the length of each production tube; wherein said injector AICDs are arranged to inject steam into a geological formation so as to reduce the viscosity of hydrocarbons in the formation; and wherein said production AICDs are arranged to permit the flow of heated hydrocarbons into said production tubes for movement to the surface.
Abstract:
A method and a device in connection with an actuator (7) intended for use in connection with a fluid flow or fluid reservoir, in particular an actuator that is designed to be used in connection with a drainage pipe (8) for the production of oil and/or gas in an oil and/or gas reservoir. An osmotic cell (9) is used to operate the actuator (10). The osmotic cell is placed in the fluid flow, whereby the necessary force and motion for the actuator (10) to adjust or drive a fluid control device or valve are achieved by utilising the osmotic pressure difference between the solution in the cell (9) and the external fluid flow/reservoir in relation to the cell.
Abstract:
A self-adjustable valve or flow control device for controlling the flow of a fluid from one space or area to another by exploiting the Bernoulli principle, to control the flow of fluid, such as oil and/or gas including any water, from an oil or gas reservoir and into a production pipe of a well in the oil and/or gas reservoir, from an inlet port on an inlet side to an outlet port on an outlet side of the device. The valve includes a movable valve body arranged to be acted on by a temperature responsive device. The valve body is arranged to be actuated towards its closed position by the temperature responsive device in response to a predetermined increase in temperature in the fluid surrounding and/or entering the valve. The temperature responsive device includes an expandable device including a sealed structure at least partially filled with an expandable material.
Abstract:
A method for flow control and a self-adjusting valve or flow control device, in particular useful in a production pipe for producing oil and/or gas from a well in an oil and/or gas reservoir, which production pipe includes a lower drainage pipe preferably being divided into at least two sections each including one or more inflow control devices which communicates the geological production formation with the flow space of the drainage pipe. The fluid flows through an inlet (10′) and further through a flow path of the control device (2) passing by a non-disc shaped movable body (9′) which is designed to move relative to the opening of the inlet and thereby reduce or increase the flow-through area (A2) by exploiting the Bernoulli effect and stagnation pressure created over the body (9′), whereby the control device, depending on the composition of the fluid and its properties, automatically adjusts the flow of the fluid based on a pre-estimated flow design.
Abstract:
A method and a device in connection with an actuator intended for use in connection with a fluid flow or fluid reservoir, in particular an actuator that is designed to be used in connection with a drainage pipe (8) for the production of oil and/or gas in an oil and/or gas reservoir. An osmotic cell (9) is used to operate the actuator (10). The osmotic cell is placed in the fluid flow, whereby the necessary force and motion for the actuator (10) to adjust or drive a fluid control device or valve are achieved by utilizing the osmotic pressure difference between the solution in the cell (9) and an external fluid flow/reservoir in relation to the cell.
Abstract:
The invention relates to a method and apparatus for of controlling the flow of a fluid. The fluid comprises a liquid phase and a dissolved gas phase. The fluid passes through a valve, the valve comprising a fluid inlet and a movable body located in a flow path through the valve, the movable body being arranged to move freely relative to the opening of the inlet to vary the flow-through area through which the fluid flows by means of the Bernoulli effect. The dimensions of the valve are such that flow of the fluid past the movable body causes a drop in pressure to below the bubble point of the gas phase in the liquid phase, thereby increasing flow of the fluid through the valve.
Abstract:
The present invention relates to a method of improving flow stability for a multiphase fluid flowing through a tubular element (1), comprising arranging a flow control device (2) along a flow path (F) through the tubular element (1), the flow control device (2) comprising a housing (4), an inlet (10) arranged on an upstream side of the control device (2), an outlet (23, 13) arranged on a downstream side of the control device (2), and a movable body (9) provided within the housing (4) along an internal flow path (11) through the control device (2) from the inlet (10) to the outlet (23, 13), the body (9) being arranged such that changes in velocity and/or properties and/or composition of the fluid flowing along the internal flow path (11) result in changes to the forces acting on the body (9) as a result of the Bernoulli principle, thereby adjusting the flow of fluid through the control device (2).
Abstract:
A self-adjustable valve or flow control device for controlling the flow of a fluid from one space or area to another by exploiting the Bernoulli principle, to control the flow of fluid, such as oil and/or gas including any water, from an oil or gas reservoir and into a production pipe of a well in the oil and/or gas reservoir, from an inlet port on an inlet side to an outlet port on an outlet side of the device. The valve includes a movable valve body arranged to be acted on by a temperature responsive device. The valve body is arranged to be actuated towards its closed position by the temperature responsive device in response to a predetermined increase in temperature in the fluid surrounding and/or entering the valve. The temperature responsive device includes an expandable device including a sealed structure at least partially filled with an expandable material
Abstract:
Disclosed herein is an improved method for reversed flow through a self-adjustable (autonomous) valve or flow control device (2), comprising the step of providing an overpressure on the side of the valve (2) opposite of the side of the inlet (10) exceeding a predetermined biasing force of the resilient member (24) causing lifting of the inner body part (4a) within the outer body part (4b) against said biasing force from a first position of fluid flow between an inner and an outer side of the valve (2) via the flow path (11) and to a second position of reversed fluid flow between said inner and outer side through the second flow path (25). An improved self-adjustable (autonomous) valve or flow control device (2) and use of said improved valve or flow control device are also disclosed.
Abstract:
A device for fixing a valve (1) to a tubular member (2) being situated in wellbore formed in a subterranean reservoir and is having at least one drainage section (11) including a plurality of such valves as to allow the flow of fluid into and out from the tubular member, respectively. According to the present invention the valve (2) is secured to the tubular member (1) by means of a sleeve portion (3), the sleeve portion being part of the valve or is formed like a separate sleeve (4) into which the valve is to be arranged.