Abstract:
The present invention discloses a novel and improved device and method for securing a combustion liner within a gas turbine combustor. The improved configuration comprises a plurality of equally spaced support tab assemblies secured about the combustion liner and positioned radially outward of the combustion zone. The support tab assemblies comprise parallel liner tabs which provide increased flexibility, greater structural support, and lower operating stresses.
Abstract:
Methods are provided for ensuring non-excessive variation of a gradient of an applied split bias versus firing temperature of a gas turbine engine. It is determined that an incremental split bias step is to be taken, and a current firing temperature of the gas turbine engine is identified on a graph. A first difference between a split schedule and an applied schedule gradient is calculated using lower firing temperatures than the current firing temperature, and a second difference is calculated using higher firing temperatures. If the first difference exceeds a predetermined limit, the incremental split bias step is not allowed at a lower firing temperature, and similarly, if the second difference exceeds a predetermined limit, the incremental split bias step is not allowed at a higher firing temperature.
Abstract:
A method for tuning a combustor of a gas turbine engine based on one or more monitored operating conditions is provided. One or more operating conditions of the gas turbine engine are monitored. The monitored operating conditions may include, for example, a low frequency tone, a high frequency tone, and a ratio of the low frequency tone to the high frequency tone. It is determined whether the ratio of the low frequency tone to the high frequency tone is within a first predefined normal range. If the ratio of the low frequency tone to the high frequency tone is within the first predefined normal range, a determination is made not to tune the gas turbine engine. But, if the ratio of the low frequency tone to the high frequency tone is not within the first predefined normal range, a determination is made to tune the gas turbine engine.
Abstract:
The present invention discloses a novel apparatus and method for operating a gas turbine combustor having a structural configuration proximate a pilot region of the combustor which seeks to minimize the onset of thermo acoustic dynamics. The pilot region of the combustor includes a generally cylindrical extension having an outlet end with an irregular profile which incorporates asymmetries into the system so as to destroy any coherent structures.
Abstract:
A transition duct having a thermally free aft frame and being capable of adjusting the natural frequency is disclosed. The aft frame is capable of permitting movement due to thermal gradients with the transition duct. The transition duct utilizes a spring plate located adjacent to an aft mounting bracket, where the spring plate, based on its thickness can either increase or decrease a frequency of the transition duct. Such an arrangement ensures that the transition duct natural frequency does not coincide with or cross other critical engine and/or combustor frequencies.
Abstract:
A tuning process is provided for monitoring fuel properties of a fuel being consumed by a gas turbine (GT) engine, and for dynamically tuning the GT engine as a function of changes to the monitored fuel properties. Initially, readings are taken from the GT engine during a reference calibration, or commissioning, and utilized to calculate an initial-pressure-drop reference value. The tuning process during commercial operation takes post-calibration readings from the GT engine to calculate a fuel property parameter, which represents a heating value of the fuel. Specifically, the fuel property parameter is calculated by deriving a corrected-pressure-drop dynamic value as a function of pressure and temperature readings of the fuel at a point upstream of a combustor and pressure drops across fuel nozzles that introduce the fuel into the combustor, and solving a ratio of the dynamic value and the reference value.
Abstract:
Tuning processes implemented by an auto-tune controller are provided for measuring and adjusting the combustion dynamics and the emission composition of a gas turbine (GT) engine via a tuning process. Initially, the tuning process includes monitoring parameters, such as combustion dynamics and emission composition. Upon determining that one or more of the monitored parameters exceed a critical value, these “out-of-tune” parameters are compared to a scanning order table. Upon comparison, the first out-of-tune parameter that is matched within the scanning order table is addressed. The first out-of-tune parameter is then plotted as overlaid slopes on respective graphs, where the graph represents a fuel-flow split. Typically, the slopes are plotted as a particular out-of-tune parameter against a particular fuel-flow split. The slopes for each graph are considered together by taking into account the combined impact on each out-of-tune parameter when a fuel-flow split is selected for adjustment.
Abstract:
A gas turbine combustion liner is disclosed having an alternate interface region between it and a transition duct where the cooling effectiveness and heat transfer along the aft end of the combustion liner is improved, resulting in extended component life. The region of the combustion liner proximate its second end comprises a plurality of first feed holes, a plurality of spring seals that seal against a transition duct, a cooling ring having a plurality of second feed holes, that with the first feed holes pass a cooling fluid into an annulus formed between the cooling ring and combustion liner. The cooling fluid passes over a means for augmenting the heat transfer proximate the combustion liner second end, wherein the heat transfer augmentation preferably comprises a plurality of raised ridges that increases the surface area of the outer liner wall to turbulate the cooling fluid and maximize the cooling effectiveness.
Abstract:
A pilot fuel nozzle configuration for use in a combustor is disclosed having a natural frequency outside the range of the operating frequencies of a gas turbine engine. Multiple embodiments are disclosed for the improved pilot fuel nozzle including configurations for newly manufactured nozzles, repair to existing pilot nozzles, as well as multiple natural frequency levels for the improved pilot fuel nozzle. The pilot fuel nozzle comprises an elongated housing, first and second flanges, and a nozzle tip, with the first flange fixed to the elongated housing at a first end and the nozzle tip fixed to the second end, opposite of the first end. The second flange is fixed along the elongated housing and is used for attaching the pilot fuel nozzle to a combustor. The present invention incorporates an increased wall thickness along at least a mid-span portion of the pilot nozzle to increase the stiffness and change the natural frequency.
Abstract:
A combustor end cap assembly having an improved cooling configuration is disclosed. Embodiments of the present invention are directed towards an apparatus and method for cooling an effusion plate of the combustor end cap assembly. The combustor end cap assembly also incorporates an impingement plate having a plurality of cooling holes with the impingement plate positioned a predetermined distance from the effusion plate. The cooling fluid passes through the impingement plate and is directed towards and onto the effusion plate for cooling of the effusion plate.