Abstract:
A light source assembly including a light source part, a light guide plate and a light-condensing sheet. The light source assembly generates light and includes at least one light source. The light guide plate includes an incident surface to which the light is incident, an opposing surface which is opposite to the incident surface, and an exiting surface which emits the light, and has a thickness which is gradually increased from the incident surface to the opposing surface. The light-condensing sheet includes a plurality of reverse prism patterns which protrude toward the exiting surface, extend along an arc of a circle, and are arranged in a concentric circle structure.
Abstract:
The present invention relates to a touch module including a light emitting part, a light waveguide, a frustration layer, and a light receiving part. The light emitting part emits light and is disposed along a first direction. The light waveguide includes a first side surface and a second side surface and transmits light incident to the first side surface to the second side surface. The light emitting part is disposed on the first side surface, and the second side surface is disposed opposite to the first side surface along a second direction substantially perpendicular to the first direction. The frustration layer is disposed over the light waveguide and contacts the light waveguide in response to a touch to frustrate a total internal light reflection. The light receiving part is disposed on the second side surface of the light waveguide to detect a position of the touch. The frustration layer includes a plurality of frustration parts, the total internal light reflection is frustrated at a contact surface between a frustration part and the light waveguide, and an area of a first frustration part differs from an area of a second frustration part that is spaced apart from the first frustration part.
Abstract:
A light waveguide has a rectangular plate shape and is configured to totally reflect internal light arriving at an angle greater than a critical angle. Light emitting parts are disposed at corners of the light waveguide. Each of the light emitting parts emits light once in a period. A first light receiving part is disposed along a first side surface of the light waveguide, and receives light emitted from the light emitting parts adjacent to a second side surface facing the first side surface of the light waveguide. The second light receiving part is disposed along the second side surface of the light waveguide, and receives light emitted from the light emitting parts adjacent to the first side surface. A detecting part detects a touch position based on an amount of the light received by the first and second light receiving parts.
Abstract:
A touch display apparatus includes a first substrate, a second substrate, a light emitting part, a light receiving part and a light transmitting element. The second substrate faces the first substrate. The light emitting part is adjacent to a first side of the first substrate, and generates and emits light to the first substrate. The light receiving part is adjacent to a first side of the second substrate at a same side of the touch display apparatus as the first side of the first substrate, and receives light from the second substrate. The light transmitting element connects a second side of the first substrate opposing the first side of the first substrate to a second side of the second substrate opposing the first side of the second substrate.
Abstract:
A display apparatus includes a light source and a light guide plate including a light incident surface facing the light source and which receive the light, an opposite surface opposite to the light incident surface and which reflects the light and has an arc shape, connection surfaces at opposing sides of the light incident surface and which connect the light incident surface and the opposite surface, an upper surface connected to the light incident surface, the opposite surface and the connection surfaces and which outputs the light, and a lower surface opposite to the upper surface. The light incident surface of the light guide plate includes a first surface extending in a predetermined direction, and second surfaces inclined from the first surface in an area corresponding to the light source such that an optical recess having a polygonal pyramid shape is defined by the second surfaces.
Abstract:
The backlight assembly includes a light source part and a light guide plate. The light source part generates a first light beam. The light guide plate has a plurality of light guide blocks. Each of the light guide blocks has a light incident surface, an opposite surface, a light emitting surface, and an inclined surface. The light incident surface receives the first light beam. The opposite surface is located opposite to the light incident surface, has a convex shape with respect to the light incident surface, and reflects the first light beam and converts the first light beam into a second light beam. The light emitting surface emits the second light beam. The inclined surface is inclined with respect to the light emitting surface.
Abstract:
A light waveguide has a rectangular plate shape and is configured to totally reflect internal light arriving at an angle greater than a critical angle. Light emitting parts are disposed at corners of the light waveguide. Each of the light emitting parts emits light once in a period. A first light receiving part is disposed along a first side surface of the light waveguide, and receives light emitted from the light emitting parts adjacent to a second side surface facing the first side surface of the light waveguide. The second light receiving part is disposed along the second side surface of the light waveguide, and receives light emitted from the light emitting parts adjacent to the first side surface. A detecting part detects a touch position based on an amount of the light received by the first and second light receiving parts.
Abstract:
A touch display apparatus includes a first substrate, a second substrate, a light emitting part, a light receiving part and a light transmitting element. The second substrate faces the first substrate. The light emitting part is adjacent to a first side of the first substrate, and generates and emits light to the first substrate. The light receiving part is adjacent to a first side of the second substrate at a same side of the touch display apparatus as the first side of the first substrate, and receives light from the second substrate. The light transmitting element connects a second side of the first substrate opposing the first side of the first substrate to a second side of the second substrate opposing the first side of the second substrate.
Abstract:
In a light guide plate and a display apparatus having the light guide plate, a light guide plate includes reflective prisms, in which at least one of the reflective prisms includes an inclined angle adjustable according to an inclined surface of a defective portion thereof and compensates for a distortion of light caused by the defective portion.
Abstract:
The present invention provides a shutter pixel, a shutter structure including the shutter pixel, and an exposure apparatus including the shutter structure. The shutter pixel may include a lower substrate, an electrode disposed on the lower substrate, a spacer disposed on the edge of the electrode, a first mirror disposed on the spacer to be separated from the electrode and including a hole, an upper substrate disposed on the lower substrate to face the lower substrate, and a second mirror disposed at the upper substrate and overlapping the hole. Accordingly, a relatively simple structure may be provided.