Abstract:
A vibration-powered impact recording device that harvests power from vibrations that affect the device is provided. The recording device is affixed to an object and includes a vibration limit detection and recordation system. The system can include a suitable part that is fixed to the object, and a mass (or other suitable part) that is less firmly attached, with the relative motion between the two parts producing an electrical voltage. The electrical voltage can be used to power an information storage unit that records the details of the impact and optionally other sensors which record other parameters such as temperature, humidity etc. at the time of impact.
Abstract:
A vibration-powered impact recording device that harvests power from vibrations that affect the device is provided. The recording device is affixed to an object and includes a vibration limit detection and recordation system. The system can include a suitable part that is fixed to the object, and a mass (or other suitable part) that is less firmly attached, with the relative motion between the two parts producing an electrical voltage. The electrical voltage can be used to power an information storage unit that records the details of the impact and optionally other sensors which record other parameters such as temperature, humidity etc. at the time of impact.
Abstract:
An electro-optic device comprising an electro-optic crystal substrate, an optical waveguide path in the crystal adjacent the substrate surface and an electrode spaced from the surface by a buffer layer is provided with enhanced operating stability by forming the buffer layer of a transparent electronically conductive material. Preferred buffer materials are electronically conductive gallium-indium-oxide and electronically conductive zinc-indium-tin-oxide.
Abstract:
A method and system for optically recognizing an object from a reference library of known products based on a spectrum of local radius of curvature of the object. A surface portion of an object is illuminated with a pattern of light that permits the extraction of three dimensional coordinates for a set of points on the surface portion of the object. An image data set of the surface portion of the object is then captured with a capture device that is positioned at an angular offset with respect to a source of the light. That is, the combination of the light pattern and the imaging device together generate a two dimensional captured image, from which it is possible to extract the three dimensional coordinates for the set of points on the surface portion of the object. A set of local radii of curvatures are then determined for selected data points in the image data set. A spectrum representing a distribution of the curvatures is then computed for the set of local radii of curvatures. If the data set is for the generation of a library of spectra, it is processed with a dimension reduction analysis to determine a single set of basis functions representing all of the objects and a corresponding set of basis coefficients for each different type of object. If the data set is for an unknown object, then the dimension reduction analysis and the basis functions are applied to the data set to generate an unidentified set of basis coefficients. This latter set is then statistically compared with the reference library of spectra to identify the product or at least designate the closest known products.
Abstract:
In accordance with the invention, an improved optical communication system employs light-generating devices comprising a phonon-tuned crystal alloy host doped with an optically active atom. In one embodiment, the crystal alloy host and optically active atom respectively comprise spinel and nickel. The spinel material is typically a solid solution between magnesium aluminate and magnesium gallate.
Abstract:
Applicants have discovered that films of conductively doped GaInO.sub.3 grown on substrates by pulsed laser deposition have conductivity comparable to conventional wide band-gap transparent conductors while exhibiting superior light transmission, particularly in the green and blue wavelength regions of the visible spectrum. Substrate temperatures ranged from room temperature to 350.degree. C. in an ambient containing oxygen at partial pressure in the range 0.1 mTorr to 100 mTorr. The preferred laser source was an excimer laser operating in the deep ultraviolet.
Abstract:
Devices and methods for the measurement and control of fluid using one or two capacitors are described. The devices use Micro-Electro-Mechanical-Systems (MEMS) and radio-frequency inductive coupling to sense the properties of a fluid in a tube. The single and double capacitor devices may be coupled to shunts implantable in a patient and operable to be interrogated non-invasively. The shunts employing the novel capacitor devices are insensitive to stray signals such as the orientation of a patient's head. The devices are operable to employ a wireless external spectrometer to measure passive subcutaneous components.
Abstract:
A process for device fabrication is disclosed in which two substrates having different crystal lattices are bound together. In the process the substrate surfaces are placed in physical contact with each other. A flexible membrane is placed in physical contact with a surface of one of the substrates. Pneumatic force is applied to the flexible membrane. The duration of the contact and the pressure of the contact are selected to facilitate a bond between the two substrate surfaces that results from attractive Van der Waals' forces between the two surfaces. The bulk of one of the substrates is then typically removed. Thereafter, the bonded surfaces are heated to a high temperature to effect a permanent bond.
Abstract:
A process for device fabrication is disclosed in which two substrates having different crystal lattices are bound together. In the process the substrate surfaces are thoroughly cleaned and placed in physical contact with each other. The duration of the contact and the pressure of the contact are selected to facilitate a bond between the two substrate surfaces that results from attractive Van der Waals' forces between the two surfaces. The bonded substrates are heated to a moderate temperature to effect escape of gases which may be entrapped by the substrates. The bulk of one of the substrates is then typically removed. The substrates can be heated again to a moderate temperature to effect removal of any gases remaining entrapped on the substrates. Thereafter, the bonded surfaces are heated to a high temperature to effect a permanent bond.
Abstract:
A method is disclosed for processing a silicon workpiece including a hybrid thermometer system for measuring and controlling the processing temperature where fabrication materials have been or are being applied to the workpiece. The hybrid thermometer system uses optical reflectance and another thermometer technique, such as a thermocouple and/or a pyrometer. Real-time spectral data are compared to values in a spectrum library to determine the “surface conditions”. A decision is then made based on the surface conditions as to how the temperature is measured, e.g., with optical reflectance, a pyrometer, or a thermocouple, and the temperature is measured using the appropriately selected technique. Utilizing the hybrid thermometer system, the temperature of a silicon workpiece may be accurately measured at low temperatures while accounting for the presence of fabrication materials.