Abstract:
The reactivity of phosphorus pentoxide is reduced and its flow behavior improved. To this end, phosphorus pentoxide in the form of its hexagonal modification is annealed over a period of 0.5 to 8 hours at temperatures of 200.degree. to 390.degree. C.
Abstract:
An aqueous alkali phosphate solution is made. An organic phase is countercurrently mixed with an aqueous phase, the two phases being used in a volume ratio larger than 1:1 and formed aqueous alkali phosphate solution is separated from the remaining organic phase. The two phases are mixed and reacted in a reaction zone comprised of a mixing and separating zone. The organic phase is continuously dispersed in the aqueous phase. A volume excess of aqueous phase is maintained in the mixing zone and the two phases are used in an overall quantity sufficient to provide a volume ratio of organic to aqueous phase of 4:6 to 2:8.
Abstract:
Phosphoric acid solutions are dearsenified by treating them with a sulfide and separating the resulting precipitate from the purified solution. The sulfide is at least one compound of the general formula P.sub.4 S.sub.x in which x stands for a number of 3 to 10.
Abstract:
The disclosure relates to a process for removing nitrogen dioxide from off-gas. To this end, the disclosure provides for the off-gas to be intimately contacted with a suspension consisting of red phosphorus and a liquid being inert with respect to red phosphorus, e.g. water.
Abstract:
The invention relates to a process for making red phosphorus by subjecting molten yellow phosphorus to a thermal conversion reaction in a closed reaction zone. To this end, a hollow shaft-provided and closed ball mill is preheated to a reaction temperature within the range 280.degree. to 590.degree. C. Yellow phosphorus is continuously introduced into the ball mill through the hollow shaft in quantities per unit time which permit the reaction temperature prevailing inside the ball mill to be maintained without supply of heat from the outside. More particularly, decreasing quantities of yellow phosphorus are introduced per unit time at increasing temperature and increasing quantities of yellow phosphorus are introduced per unit time at decreasing temperature within the limits specified. Red phosphorus is allowed to cool inside the ball mill, water is poured over it and the whole is subjected to wet-grinding. An aqueous suspension of red phosphorus is finally removed from the ball mill.
Abstract:
Production of (hydroxymethyl)-alkyl, cycloalkyl or aralkylphosphines of the general formula:R.sub.n P(CH.sub.2 OH).sub.3-nin which n stands for 1 or 2 and R stands for identical or different, substituted or unsubstituted alkyl, cycloalkyl or aralkyl radicals having from 1 to 18 carbon atoms. The compounds are made by reacting suitable mono- or di-alkyl, cycloalkyl or aralkylphosphines at atmospheric pressure and at temperatures lower than 40.degree. C with formaldehyde, paraformaldehyde or trioxane in the presence of polar organic solvents being inert with respect to the resulting reaction product, and separating the solvent from the reaction product.
Abstract:
The disclosure relates to a process for purifying crude, concentrated wet-processed phosphoric acid. To this end, the disclosure provides:(a) for the organic solvent to be mixed with the starting product in a ratio by volume of more than 4:1 to effect the extraction in a single process step--from the crude wet-processed phosphoric acid--of a quantity of phosphoric acid necessary for 40 to 70 weight % of the P.sub.2 O.sub.5 used to go into the organic phase, and for the resulting aqueous phosphoric acid raffinate to contain at most 28-32 weight % P.sub.2 O.sub.5, and for the organic phosphoric acid solution to be separated from the phosphoric acid raffinate;(b) for the separated organic phosphoric acid solution to be scrubbed with a quantity of scrubbing solution corresponding at most to 5% of the volume of the phosphoric acid solution; for the scrubbing solution to be recycled into stage (a), and for purified phosphoric acid and phosphate salt solution, respectively, to be recovered in known manner from the scrubbed phosphoric acid solution; and(c) for the aqueous phosphoric acid raffinate produced in stage (a), if desired after prior removal of residual solvent therefrom, to be directly utilized or subjected to known purifying treatment.
Abstract:
The disclosure provides for phosphoric acid to be freed in a single process stage from fluorine and organic contaminants. To this end, the disclosure provides for the acid to be introduced into the upper portion of a closed structural element, for it to be treated therein at elevated temperature and pressure with steam flowing countercurrently to the acid, and for the acid so treated to be reacted in the lower portion of the structural element with hydrogen peroxide. The disclosure also provides an apparatus for carrying out the process.
Abstract:
The present invention relates to a process for recovering uranium from raffinate which is obtained by extracting phosphoric acid from a uranium-containing wet-process phosphoric acid with the aid of organic extractants and separating the resulting organic phosphoric acid extract from residue not taken up by the extract. To this end, the raffinate residue is subjected to thermal treatment and thereby freed from dissolved or emulsified residual extractant. Next, the raffinate is treated with a water-immiscible solvent to extract the uranium, and the extracted uranium is separated from the undissolved raffinate portion.
Abstract:
The disclosure relates to process for removing heavy metal ions, especially cadmium, copper, lead and mercury ions from wet-processed phosphoric acid. To this end, the crude acid is contacted with a mixture consisting of an adsorbent and a diorganyldithiophosphoric acid ester or, after treatment with the ester, the acid is contacted with the adsorbent alone, and the purified phosphoric acid is ultimately separated from the ester and adsorbent.