Abstract:
A method of data transmission according to one embodiment of the invention includes encoding a set of data values to produce a corresponding series of ordered n-tuples. The method also includes transmitting, according to the series of ordered n-tuples, a plurality of bursts over a plurality n of frequency bands. Specifically, for each of the plurality of bursts, a frequency band occupied by the burst is indicated by the order within its n-tuple of an element corresponding to the burst. A bandwidth of at least one of the plurality of bursts is at least two percent of the center frequency of the burst. Information is encoded into a polarity of at least one of the plurality of bursts.
Abstract:
An oscillator includes a common logic circuit and a plurality of delay lines. Each delay line is configured to receive a state transition at its input terminal and to output a corresponding state transition at its output terminal after a corresponding delay. An output terminal of each delay line is in electrical circuit with a corresponding input terminal of the common logic circuit, and the input terminal of each of the delay lines is in selectable electrical circuit with the output terminal of the common logic unit. The common logic circuit is configured to output a state transition at its output terminal in response to a state transition at any one of the input terminals of the common logic circuit.
Abstract:
A method and apparatus for operation in a multi-frequency band wideband system in the presence of an interference, the method comprising the steps: receiving signaling in a plurality of wideband frequency sub-bands, each wideband frequency sub-band having a different center frequency, wherein a bandwidth of each wideband frequency sub-band is at least 2 percent of a center frequency of the wideband frequency sub-band; detecting an interfering signal having signal energy in a portion of a respective sub-band of the wideband frequency sub-bands; modifying at least one of a center frequency and a bandwidth of the respective sub-band in order to operate in the presence of the interfering signal; and instructing a transmitting device transmitting the signaling to transmit subsequent signaling accounting for the modification of the center frequency of the respective sub-band.
Abstract:
A method of data transmission according to one embodiment of the invention includes encoding a set of data values to produce a corresponding series of ordered n-tuples. The method also includes transmitting, according to the series of ordered n-tuples, a plurality of bursts over a plurality n of frequency bands. Specifically, for each of the plurality of bursts, a frequency band occupied by the burst is indicated by the order within its n-tuple of an element corresponding to the burst. A bandwidth of at least one of the plurality of bursts is at least two percent of the center frequency of the burst. Information is encoded into a polarity of at least one of the plurality of bursts.
Abstract:
A method of data transmission according to one embodiment of the invention includes transmitting a plurality of bursts to transmit data, each burst occupying at least one of a plurality of frequency bands. Specifically, a bandwidth of at least one of the plurality of bursts is at least two percent of the center frequency of the burst. In one preferred embodiment, a bandwidth of at least one of the plurality of bursts is at least 100 MHz. In another preferred embodiment, each burst occupies at least one of the plurality of frequency bands, but less than all of the plurality of frequency bands.
Abstract:
A method and apparatus for signal detection and error detection in a multi-band system, the method for error detection comprising the steps: receiving a plurality of bursts, each burst occupying at least one of a plurality of frequency bands, the plurality of bursts encoding a symbol, the symbol corresponding to data, wherein the symbol is encoded such that a burst occupying each frequency band is transmitted a specified number of times within the plurality of bursts; determining that a given burst has not been detected the specified number of times; and declaring a transmission error for the symbol. In one variation, the frequency bands comprise wideband frequency bands.
Abstract:
Methods and apparatus are provided for radar systems using multiple pulses that are shorter than the expected range delay extent of the target to be imaged. In one implementation, a method for performing radar includes the steps of: transmitting a plurality of pulses, each pulse having a different center frequency and a time duration shorter than an expected range delay extent of a target, wherein a total bandwidth is defined by a bandwidth occupied by the plurality of pulses; receiving reflections of the plurality of pulses; and performing pulse compression on the received pulse reflections to generate a detection signal having a radar resolution approximately equivalent to the transmission and reception of a single pulse having the total bandwidth. In preferred form, the pulses comprise ultrawideband (UWB) pulses each occupying a sub-band of the overall system bandwidth.
Abstract:
A method of data transmission according to one embodiment of the invention includes encoding a set of data values to produce a corresponding series of ordered n-tuples. The method also includes transmitting, according to the series of ordered n-tuples, a plurality of bursts over a plurality n of frequency bands. Specifically, for each of the plurality of bursts, a frequency band occupied by the burst is indicated by the order within its n-tuple of an element corresponding to the burst. A bandwidth of at least one of the plurality of bursts is at least two percent of the center frequency of the burst. Information is encoded into an additional modulation, e.g., amplitude, width or polarization modulation, of at least one of the plurality of bursts.
Abstract:
A method of data transmission according to one embodiment of the invention includes encoding a set of data values to produce a corresponding series of ordered n-tuples. The method also includes transmitting, according to the series of ordered n-tuples, a plurality of bursts over a plurality n of frequency bands. Specifically, for each of the plurality of bursts, a frequency band occupied by the burst is indicated by the order within its n-tuple of an element corresponding to the burst. A bandwidth of at least one of the plurality of bursts is at least two percent of the center frequency of the burst. Information is encoded into a polarity of at least one of the plurality of bursts.
Abstract:
A method and apparatus for operation in a multi-frequency band system in the presence of an interference, the method comprising the steps of: receiving signaling in a plurality of wideband frequency sub-bands, each wideband frequency sub-band having a different center frequency, wherein a bandwidth of each wideband frequency sub-band is at least 2 percent of a center frequency of the wideband frequency sub-band; detecting an interfering signal having signal energy in a portion of a respective sub-band of the wideband frequency sub-bands; deciding to discontinue use of the respective sub-band; and instructing a transmitting device transmitting the signaling to transmit subsequent signaling in any except the respective sub-band of the plurality of wideband frequency sub-bands.