Abstract:
Various embodiments of an electric motor and electronic control for an electric motor are disclosed. An exemplary electric motor comprises a single-phase brushless permanent magnet electric motor. In exemplary embodiments, the electronic motor control is configured to commutate an electric motor at a frequency other than line frequency, perform pulse width modulation, and drive the electric motor with a drive waveform that approximates the counter-electromotive force of the motor.
Abstract:
A horizontal axis washing machine includes a clothing receptacle rotated by a 4 pole rotor. A 36 slot stator having an interior bore with an interior diameter receives the 4 pole rotor in magnetic coupling relation and capable of operating within a flux weakening range of at least 5:1. The stator has a ratio of an interior diameter to a minimum exterior diameter greater than or equal to 0.63:1.
Abstract:
A motor having a rotor including first outer surface segments providing uniform air gaps and second outer surface segments providing non-uniform air gaps. The rotor has an outer surface contour comprising a number of first outer surface segments defined by arcs having a first radius centered on a central longitudinal axis and a number of second outer surface segments defined by lines other than arcs having a first radius centered on a central longitudinal axis.
Abstract:
An interior permanent magnet electric motor. A lobed rotor comprising composite slots and non-composite slots radially spaced from its longitudinal axis of rotation extending parallel to the axis. Ferrite magnets are positioned in both the composite and non-composite slots and neo magnets are positioned in the composite slots only.
Abstract:
An interior permanent magnet machine is disclosed that, in one exemplary embodiment, includes a stator defining a number of stator poles, a rotor, a number of permanent magnets positioned within the interior of the rotor and at least two impedance reduction slits associated with each permanent magnet where the impedance reduction slits are positioned radially outward of the permanent magnets. In further embodiments, each impedance reduction slit is positioned such that at least a portion of the slit is within a defined region.
Abstract:
Permanent magnet machines including doubly salient machines having one or more permanent magnets located at least partly and preferably entirely within the stator teeth, thereby avoiding weakening of the stator structure while reducing acoustic noise. The magnets may be located in only a subset of the stator teeth, thereby lowering magnet material and manufacturing costs, and all such magnets may have north poles directed toward an interior of the machine, resulting in reduced cogging and negative torques with improved torque densities. The permanent magnets may also extend within the stator teeth on an angle or diagonal, thereby allowing use of magnets which are wider than the teeth themselves to produce greater flux. Further, a magnetizing device having a single coil may be used to simultaneously magnetize all the stator magnets with a common polarity.
Abstract:
A control circuit (10) for controlling the residual or tail current decay in a single phase or polyphase SRM winding when a phase is switched from active to inactive. A Hall-effect type sensor (30) senses rotor position of the SRM. Current flows through a winding (W) of the motor when the motor phase winding is active; and, current flow into the winding decays to zero when the phase becomes inactive. Semiconductor switches (22) direct current flow into the winding when the phase is active and then redirect residual energy in the winding between an energy recovery circuit and an energy dissipation circuit when the phase becomes inactive. A PWM signal generator (44) provides PWM operating signals to the switches to control current flow first into the winding and then between the recovery and dissipation circuits. A control module (42), or microprocessor (52) with a PWM output, is responsive to rotor position information for controlling operation of the PWM signal generator. The signal generator provides PWM signals having one set of signal characteristics when there is current flow to the winding and a different set of characteristics when there is not. This produces alternate intervals of zero voltage and forced commutation residual current decay while the phase is inactive. During the decay interval, both the PWM frequency and pulse duty cycle are variable to produce a current decay scheme which eliminates ringing and motor noise.
Abstract:
Sensing apparatus for use on a polyphase switched reluctance motor (M, M'). The motor has a stator assembly (SA) and a rotor assembly (RA) including a rotor shaft (S) on which the rotor assembly is mounted for rotation with respect to the stator. Each respective motor phase is switched between active and inactive states by a commutator controller (C) responsive to sensed motor operating conditions. Switching a phase to its active state includes supplying current to the respective rotor phase windings, and switching the phase to its inactive state includes cessation of the current supply. Accordingly, there is a turn-on, running, and turn-off portion of each cycle of current supply with the turn-on portion of the cycle lasting approximately 30%-45% as long as the turn-off cycle. The apparatus includes a magnetic ring (10, 10') installed on the rotor shaft and rotatable therewith. It also includes a sensor (12, 14) for sensing changes in a magnetic field produced by the ring as it rotates with the shaft. The magnetic ring has a set of magnetic poles for each motor phase. The portion of the circumference of the ring subtended by one of the poles of each set is greater than that subtended by the other pole of the set. Respective portions of the circumference subtended by the poles in each set is proportional to the turn-off time to the turn-on time.
Abstract:
A brushless, permanent magnet dynamo-electric machine (50) has a stator assembly (52) and a rotor assembly (RA). The rotor assembly includes a rotor (R) mounted on a rotor shaft (RS). The stator assembly has a plurality of inwardly salient poles (54) and the rotor has a plurality of outwardly salient poles (RP). The rotor is comprised of a plurality of stacked rotor laminations (L) defining the rotor poles, and there is an air gap (G1) between the rotor and stator poles. An improvement (56) of the present invention controls the available flux coupled between the rotor and stator assemblies. A coil (70) is supported on a magnetic mounting structure (66) which is connected to an endwall (W) of the motor housing and fits the coil over the rotor shaft. D.C. current is supplied to the coil. A plurality of magnets (82a, 82b) extend the length of the lamination stack and the magnets are positioned adjacent an outer face of one pole for each set of rotor poles. The magnets are mounted on support structure (72) that extends about the coil. The magnets magnetically attach to the outer surface of the rotor poles to suspend the structure about the shaft. An air gap (G2) extends between the coil and shaft. The magnets rotate in synchronism with the rotor. The current supplied to the coil controls the flux coupled to the rotor, and the mounting structures for the coil and magnets partially define a diversion flux path for the resultant flux.
Abstract:
A stator assembly adapted for use in an external rotor electric motor. The assembly includes a stator core having a hub, a plurality of teeth extending radially outward from the hub, a root tooth diameter and an outer diameter. Each tooth has a root, a neck extending from the root and a head opposite the root. The neck has a maximum width. Each adjacent pair of teeth has a pitch measured at the roots of the corresponding teeth. The assembly includes a winding wrapped around each tooth of at least three teeth of the stator core. A ratio of the root tooth diameter of the stator core to the outer diameter of the stator core is less than about 0.75. A ratio of the maximum tooth neck width to the tooth pitch measured at the root of the teeth is greater than about 0.36.