摘要:
A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).
摘要:
A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).
摘要:
A solid oxide fuel cell stack comprises a plurality of first modules and a plurality of second modules stacked alternately. Each first module comprises a first distribution member which defines internal passages for the supply of a first reactant to the fuel cells. The first distribution member is enclosed by a porous support structure which carries the fuel cells on its two parallel surfaces. A plurality of passages are defined between the porous support structure and the first distribution member which distribute and remove the first reactant from the anodes. Each second module comprises a second distribution member which defines internal passages for the supply of a second reactant to the fuel cells. The passages in the first distribution member contain a catalyst for steam reforming the fuel. The catalyst is in intimate thermal contact with the fuel cells. Additionally a low temperature adiabatic preformer supplied with hydrocarbon fuel prereforms the fuel and supplies it to the passages.
摘要:
A hydrocarbon fuelled fuel cell power system comprises a fuel cell stack, a reformer and a hydrogen store. The reformer is arranged periodically to supply reformate, which contains hydrogen, to the fuel cell stack and to the hydrogen store. The hydrogen store is arranged to store the hydrogen from the reformate during the periods that the reformer operates. The hydrogen store is arranged to supply hydrogen to the fuel cell stack during periods of low load demands on the fuel cell stack and is capable of supplying hydrogen rapidly to the fuel cell stack for high load demands on the fuel cell stack. The hydrogen store also supplies hydrogen to the reformer to light up the reformer. The hydrogen store buffers the fast response of the fuel cell stack and the relatively slower response of the reformer during relatively large rapid demands on the fuel cell stack and enables the reformer to be operated in an on/off mode.
摘要:
A solid oxide fuel cell stack comprises a plurality of first modules and a plurality of second modules stacked alternately. Each first module comprises a first distribution member which defines internal passages for the supply of a first reactant to the fuel cells. The first distribution member is enclosed by a porous support structure which carries the fuel cells on its two parallel surfaces. A plurality of passages are defined between the porous support structure and the first distribution member which distribute and remove the first reactant from the anodes. Each second module comprises a second distribution member which defines internal passages for the supply of a second reactant to the fuel cells. The passages in the first distribution member contain a catalyst for steam reforming the fuel. The catalyst is in intimate thermal contact with the fuel cells. Additionally a low temperature adiabatic preformer supplied with hydrocarbon fuel prereforms the fuel and supplies it to the passages.
摘要:
A water cooled nuclear reactor comprises a reactor core, a primary water coolant circuit and a pressurizer arranged as an integral unit in a pressure vessel. The pressure vessel is divided into an upper chamber and a lower chamber by a casing, the reactor core and primary coolant circuit are arranged in the lower chamber and the pressuriser is arranged in the upper chamber.A plurality of pipes interconnect a steam space of the pressuriser with an upper portion of the primary coolant circuit via ports in the casing. A plurality of re-entrant surge ports interconnect a water space of the pressuriser with a lower portion of the primary coolant circuit. The surge ports have low flow resistance for water from the water space to the primary coolant circuit and high flow resistance in the opposite direction.
摘要:
A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).
摘要:
A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).
摘要:
A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).
摘要:
A fuel cell uses hydrogen as a fuel and oxygen as an oxidant and a hollow member is partially located in an anode chamber, partially located in a cathode chamber and partially located in a water collecting chamber. The hollow member contains a non electrolyte aqueous solution, eg sucrose solution. The hollow member is formed from a semi-permeable membrane which allows water to permeate therethrough but prevents hydrogen, oxygen and the solute, eg sucrose permeating therethrough. Water transported through a solid polymer electrolyte from the anode chamber to the cathode chamber and water produced in the cathode chamber permeates through the semi-permeable membrane into the hollow member by osmosis. Water in the hollow member permeates through the semi-permeable membrane into the anode chamber and dryer regions of the cathode chamber by osmosis. Water in the hollow member permeates through the semi-permeable membrane into the water collecting chamber.