Abstract:
A serpentine, slit fin (26) is provided for a heat sink device (10) used for cooling a electronic component (12) having a surface (14) that rejects heat. The heat sink (10) includes a plate (16) having first and second surfaces (18, 20), with the first surface (18) configured to receive heat from the surface (14) of the electronic component (12). The fin (26) is bonded to the second surface and includes a plurality of offset sidewall portions (48). In one form, a fan (22) is spaced above the second surface (20) to direct an impingement airflow (24) towards the second surface (20) substantially perpendicular to the second surface (20), and the serpentine, slit fin (26) underlies the fan (22) and is bonded to the second surface (20).
Abstract:
A heat exchanger for transferring heat between a first working fluid and a second working fluid, including a pair of spaced apart headers, a number of tubes extending between the pair of headers and providing a flow path for the first working fluid and being positioned along a flow path for the second working fluid, and an insert supportable in one of the tubes and having a fold extending in a direction substantially parallel to the flow path for the first working fluid through the tubes. The fold can define first and second legs of the insert. A dimple can be formed on the first leg and a protrusion can be formed on the second leg opposite to the dimple on the first leg.
Abstract:
The present invention provides a heat exchanger for transferring heat between a first working fluid and a second working fluid, including a pair of spaced apart headers, a number of tubes extending between the pair of headers and providing a flow path for the first working fluid and being positioned along a flow path for the second working fluid, and an insert supportable in one of the tubes and having a fold extending in a direction substantially parallel to the flow path for the first working fluid through the tubes. The fold can define first and second legs of the insert. A dimple can be formed on the first leg and a protrusion can be formed on the second leg opposite to the dimple on the first leg.
Abstract:
A turbulator (60A-60K) is provided for use in the heat exchange units (34) of heat exchangers. The turbulator (60A-60K) includes a sheet (62A, 62C) of material. The sheet (62A, 62C) includes a plurality of strand-like rows (64A, 64C) of alternating crests (66A, 66C) and valleys (68A, 68C). The crests (66A, 66C) and valleys (68A, 68C) in each row (64A, 64C) are offset with respect to the crests (66A, 66C) and valleys (68A, 68C) in any immediately adjacent row (64A, 64C). Each of the rows (64A, 64C) has an interface with any immediately adjacent row (64A, 64C). The interfaces are perforated so that valleys (68A, 68C) in each row (64A, 64C) are in fluid communication with immediately adjacent crests (66A, 66C) in any immediately adjacent row (64A, 64C) and crests (66A, 66C) in each row (64A, 64C) are in fluid communication with any immediately adjacent valleys (68A, 68C) in any immediately adjacent row (64A, 62C). In some preferred embodiments (60A, 60C, 60D, 60E, 60F, 60H, 60J, 60K), the plurality of rows (64A, 64C) are divided into at least two groups (76A, 76C, 76J; 78A, 78C, 78J) which together define a herringbone pattern of the crests (66A, 66C) and valleys (68A, 68C).
Abstract:
A heat exchanger with a plurality of stacked flat tubes and a collecting tank having a wall extending around the entire periphery of, and connected to, the end of the stacked flat tubes. A first medium may be distributed through the collecting tank and flat tubes. Internal inserts are in the flat tubes, with the inserts being bonded between the broad sides of the tubes and, in the region of connection of the tubes to the collecting tank, being configured to compensate for length changes in the stacking direction caused by temperature changes, as by recesses in connectors such as wave flanks or by corrugated wave flanks. The flat tubes with inserts such as described may be separately provided for use in manufacture of heat exchangers.
Abstract:
A heat exchanger for transferring heat between a first working fluid and a second working fluid, including a pair of spaced apart headers, a number of tubes extending between the pair of headers and providing a flow path for the first working fluid and being positioned along a flow path for the second working fluid, and an insert supportable in one of the tubes and having a fold extending in a direction substantially parallel to the flow path for the first working fluid through the tubes. The fold can define first and second legs of the insert. A dimple can be formed on the first leg and a protrusion can be formed on the second leg opposite to the dimple on the first leg.
Abstract:
A method and apparatus are provided for roll forming a plurality of fin strips (10) from a single elongated strip of sheet material (20). The strip (20) includes a pair of adjacent, longitudinal rows (22, 24) of alternating crests (26) and valleys (28), with the crests (26) and valleys (28) of the row (22) longitudinally offset from the crests (26) and valleys (28) of the other row (24) so that the two rows (22, 24) are joined by a plurality of longitudinally spaced discrete connections (30) that define a longitudinal interface (32) between the two rows (22, 24). The connections (30) are broken by displacing the two rows (22, 24) relative to each other to form a pair of fin strips (36, 38), with each fin strip (36, 38) having a side edge (40, 42) defined by the now separated interface (32).