Abstract:
The invention relates to a protection device (1) for a knuckle joint (21) e.g. for the steering and/or suspension of a vehicle, which comprises an annular flange (2) for securing a thermal screen (3) to the knuckle joint, said screen extending lengthwise substantially perpendicular to the flange (2) and widthwise substantially along the annular periphery of the flange. The screen and the flange are formed as a single part in a metal sheet that is folded in a linking area between the screen and the flange, the screen further including a surface portion in the form of a side tab (6) extending along the annular periphery of the flange, said side tab being separated from the flange by a notch (12) in the metal sheet, in the form of a slot.
Abstract:
A bias current is generated for an unbalanced differential pair that is proportional to the transconductance gain of the differential pair. When the transconductance gain varies (e.g., due to temperature variations), the bias current varies in proportion thereby maintaining a constant offset voltage. In some implementations, a voltage to current converter circuit generates the bias current from a constant reference voltage that is independent of temperature and voltage supply variations (e.g., a bandgap reference voltage).
Abstract:
The invention relates to a protection device (1) for a knuckle joint (21) e.g. for the steering and/or suspension of a vehicle, which comprises an annular flange (2) for securing a thermal screen (3) to the knuckle joint, said screen extending lengthwise substantially perpendicular to the flange (2) and widthwise substantially along the, annular periphery of the flange. The screen and the flange are formed as a single part in a metal sheet that is folded in a linking area between the screen and the flange, the screen further including a surface portion in the form of a side tab (6) extending along the annular periphery of the flange, said side tab being separated from the flange by a notch (12) in the metal sheet, in the form of a slot.
Abstract:
A bias current is generated for an unbalanced differential pair that is proportional to the transconductance gain of the differential pair. When the transconductance gain varies (e.g., due to temperature variations), the bias current varies in proportion thereby maintaining a constant offset voltage. In some implementations, a voltage to current converter circuit generates the bias current from a constant reference voltage that is independent of temperature and voltage supply variations (e.g., a bandgap reference voltage).
Abstract:
An autonomous antifuse cell providing protection against intruders includes an antifuse, sense circuitry, feedback circuitry, program circuitry, and blocking circuitry. The blocking circuitry blocks access of any programming voltage input signals to the antifuse device if the antifuse is previously blown and when power is applied to the cell. In an exemplary embodiment, the antifuse cell uses only a single external access pin. Once the antifuse device is blown and during subsequent power-up operations, intrusion is prevented.
Abstract:
An autonomous antifuse cell providing protection against intruders includes an antifuse, sense circuitry, feedback circuitry, program circuitry, and blocking circuitry. The blocking circuitry blocks access of any programming voltage input signals to the antifuse device if the antifuse is previously blown and when power is applied to the cell. In an exemplary embodiment, the antifuse cell uses only a single external access pin. Once the antifuse device is blown and during subsequent power-up operations, intrusion is prevented.
Abstract:
An autonomous antifuse cell providing protection against intruders includes an antifuse, sense circuitry, feedback circuitry, program circuitry, and blocking circuitry. The blocking circuitry blocks access of any programming voltage input signals to the antifuse device if the antifuse is previously blown and when power is applied to the cell. In an exemplary embodiment, the antifuse cell uses only a single external access pin. Once the antifuse device is blown and during subsequent power-up operations, intrusion is prevented.
Abstract:
A differential threshold voltage level detection circuit receives a differential voltage pair as an input, applying each component of the differential pair to an individual voltage shifting circuit. Each voltage shifting circuit is configured with a regulated current producing a shifted and a non-shifted version in-phase. For a shifted set of output differential voltages, the shift magnitude is proportional to the current entering a shifting circuit and is configured to be less than a peak-to-peak magnitude of the differential voltage to be detected. A current mirror within the detector contains a current reference configured to produce a current to be passed through a voltage generator. The current magnitude is sufficient to generate a regulated voltage output to the two current regulating devices that supply the voltage shifting circuits. An overlap detector receiving both differential voltage pairs produces a signal indicating an input is at a detection threshold.
Abstract:
An output buffer in accordance with the present invention exhibits a fixed output signal slew rate. The output signal behavior is independent of the capacitive load seen by the buffer. The circuit includes a capacitive feedback path from the output node to circuitry which drives the output transistors. In one embodiment, the feedback path comprises two capacitive elements, one which comes into play during a rising edge transition and the other which affects a falling edge transition. In a second embodiment, a single capacitive element is coupled to a switching circuit for use during either a falling transition or a rising transition. The second embodiment provides precharging of the output transistor gates, and so improves response time.
Abstract:
Embodiments of a proportional phase comparator and method for aligning digital signals are generally described herein. In some embodiments, circuitry to align digital signals comprises a proportional phase comparator that generates triangular-shaped pulses for application to a charge pump. The triangular-shaped pulses may reduce an amount of charge injection in the charge pump close to convergence.