Abstract:
Systems and methods are provided for detecting the orientation and/or movement of a patient having an implantable cardiac stimulation device and evaluating whether a change in the patient's cardiac activity can be at least in part due to a change in the patient's orientation. In one particular embodiment, signals from an orientation sensor and/or a pressure sensor are evaluated to determine static positional orientation of the patient and determine based on the static orientation whether the patient's cardiac activity is abnormal.
Abstract:
An exemplary method includes delivering a cardiac resynchronization therapy using an atrio-ventricular delay and an interventricular delay, monitoring patient activity, optimizing the atrio-ventricular delay and the interventricular delay for a plurality of patient activity states to generate a plurality of optimal atrio-ventricular delays and a plurality of optimal interventricular delays, storing the optimal atrio-ventricular delays and the optimal interventricular delays in association with corresponding patient activity states, detecting a change in patient activity, adjusting an atrial pacing rate in response to the detected change in patient activity based at least in part on a heart failure status and setting the atrio-ventricular delay and the interventricular delay, in response to the detected change in patient activity, using a stored optimal atrio-ventricular delay that corresponds to the patient activity and a stored optimal interventricular delay that corresponds to the patient activity. Other exemplary technologies are also disclosed.
Abstract:
Embodiments include methods and devices for detecting ischemia in a patient and treating the ischemia with a pacing therapy that increases cardiac efficiency, output, or both, without substantially increasing myocardial oxygen consumption. Such therapy may also be used to mitigate the adverse effects of decreased blood flow to the ischemic tissue by increasing the blood flow an oxygenation thereto.
Abstract:
Techniques are provided for evaluating and optimizing the contribution of particular heart chambers to pacing efficacy. Briefly, a pacemaker temporarily alters the mode with which pacing therapy is delivered so as to selectively alter the heart chambers that are paced. The pacemaker detects any transient changes in pacing efficacy following the alteration in pacing mode. The pacemaker then assesses the contribution of particular heart chambers to pacing efficacy based on the alteration in the pacing mode and on any transient changes in the pacing efficacy. Additionally, techniques are provided herein for automatically adjusting pacing parameters to optimize the contribution of particular chambers to pacing efficacy.
Abstract:
Embodiments of the present invention relate to implantable systems, and methods for use therewith, for monitoring myocardial mechanical stability based on a signal that is indicative of mechanical functioning of a patient's heart for a plurality of consecutive beats. Certain embodiments use time domain techniques, while other embodiments use frequency domain techniques, to monitor myocardial mechanical stability. In certain embodiments the patient's heart is paced using a patterned pacing sequence that repeats every N beats. In other embodiments, the patient's heart need not be paced. This abstract is not intended to be a complete description of, or limit the scope of, the invention.
Abstract:
A method and system are provided for providing coordinated ventricular overdrive and triggered pacing through an implantable system. A lead senses signals from a heart to obtain sensed signals representative of tachycardia occurring in at least one chamber of the heart. The lead includes an electrode. A control module detects tachycardia in at least one chamber of the heart and based thereon, initiates an overdrive pacing mode and a triggered pacing mode. The control module controls delivery of overdrive pacing pulses through the electrode to a first chamber of the heart in accordance with the overdrive pacing mode. The control module controls delivery of a triggered pacing pulse through the electrode to the first chamber of the heart in accordance with the triggered pacing mode. The triggered pacing pulse is temporally interspersed with the overdrive pacing pulses. The triggered pacing pulse may be delivered at a time that is independent of, and unrelated to, the timing of the overdrive pacing pulses.
Abstract:
An implantable system applies tiered antitachycardia pacing (ATP) that may be combined with pre-pulsing therapy in order to reduce pain. In one implementation, an exemplary system applies a progression of increasingly potent pacing vectors, progressing in an initial tier from small electrodes inside the heart to later tiers that increasingly use a large electrode surface outside the heart. In the latter tiers, a pre-pulse may be added prior to each ATP pulse to reduce the sensation of pain.
Abstract:
An exemplary method includes providing a filling pressure parameter, providing a perfusion parameter, determining a hemodynamic profile based at least in part on the filling pressure parameter and the perfusion parameter and adjusting a stimulation parameter of an implantable cardiac therapy device based at least in part on the hemodynamic profile. Other exemplary methods, devices, systems, etc., are also disclosed.
Abstract:
An exemplary method includes acquiring impedance values over one or more respiratory cycles, determining an impedance span based on the impedance values and, based at least in part on the impedance span, determining cardiac condition or respiratory condition. Another exemplary method includes acquiring IEGMs over one or more respiratory cycles, determining evoked response measure values based on the IEGMs, determining an evoked response span based on the evoked response measure values and, based at least in part on the evoked response span, determining cardiac condition or respiratory condition. Other exemplary methods, devices, systems, etc., are also disclosed.
Abstract:
Techniques are provided for detecting the onset of an episode of apnea/hypopnea substantially in real-time. A moving threshold is generated based on recent respiration cycles and differences are accumulated between amplitudes of new respiration cycles and the moving threshold. Apnea/hypopnea is then detected based upon a comparison of the accumulated differences against a fixed threshold. The technique exploits the fact that many episodes of hypopnea begin with a sharp drop in respiration and many episodes of apnea are preceded by a sharp drop in respiration. By accumulating differences between new respiration amplitudes and a short term moving average, any sharp drop in respiration is thereby promptly detected. In many cases, by the time the amplitudes of individual respiration cycles drop to levels directly indicative of apnea/hypopnea, the episode of apnea/hypopnea will have already been detected based upon the sudden sharp drop in respiration amplitude and therapy will have already been initiated.