Abstract:
Systems and methods are directed to reducing surface reflections on an electronic display device having a touch-screen panel. A touch-screen panel may contribute to undesirable reflection of external light. For example, a touch-screen panel typically includes conductive electrodes which may significantly reflect ambient light, resulting in decreased visibility of displayed images. In some embodiments, a circular polarizer is disposed over a touch-screen panel in the display device. The circular polarizer includes a linear polarizer and a quarter-wave plate to modify the polarization of the external light traveling towards and reflecting from the touch-screen panel and absorbing the reflected light from the touch-screen panel to significantly reduce undesirable light reflections from the touch-screen panel.
Abstract:
Display layers in an electronic device may be used to generate images. The display layers may include liquid crystal display layers such as upper and lower polarizers and a layer of liquid crystal material. A display cover layer may be mounted in a housing adhesive. A touch sensor layer may be mounted under the display cover layer. An air gap may separate the upper polarizer from the touch sensor layer and display cover layer. Antireflection coatings may be formed on the lower surface of the display cover layer or touch sensor layer and may be formed on the upper surface of the upper polarizer. The antireflection coatings may include coatings formed from a polymer hard coat covered with a polymer layer having a different index of refraction and may include broadband antireflection coating material formed from textured polymer or other structure exhibiting a continuously varying index of refraction.
Abstract:
Touch sensor panels typically include a plurality of layers that can be stacked on top of each other. When the touch sensor panel is used in a bright environment, incident light can hit the interfaces between those layers of the stackup having mismatched refractive indices and can reflect off those interfaces. The light reflected from those interfaces can give rise to the appearance of fringes on the touch sensor panel, which can be visually distracting. In order to reduce the appearance of these fringes, embodiments of the disclosure are directed to the addition of an index matching passivation layer between a conductive layer of traces and an adhesive layer in the touch sensor panel stackup.
Abstract:
Devices and methods related to high-contrast liquid crystal displays (LCDs) are provided. For example, such an electronic device may include an LCD with two liquid crystal alignment layers not symmetric to one another and upper and lower polarizing layers respectively above and below the alignment layers. Light transmittance through the plurality of pixels may increase monotonically with gray scale voltage. The display may operate using a gray scale level 0 voltage higher than a minimum gray scale level 0 voltage capability of the display. Additionally or alternatively, liquid crystal molecular alignment axes of the two alignment layers may be offset from one another by an angle other than a multiple of 180 degrees. Additionally or alternatively, a first polarizing axis of the upper polarizing layer or a second polarizing axis of the lower polarizing layer, or both, may be neither parallel nor perpendicular to one of the liquid crystal molecular alignment axes.
Abstract:
A polarizer includes a polarizer component having a top surface and an opposite bottom surface. The bottom surface is configured to couple to a color filter layer for a liquid crystal display. The polarizer also includes a transparent conducting layer disposed over the top surface. The transparent conducting layer being configured to electrically shield the LCD from a touch panel. The polarizer further includes a coating layer disposed over the transparent conducting layer.
Abstract:
Display layers in an electronic device may be used to generate images. The display layers may include liquid crystal display layers such as upper and lower polarizers and a layer of liquid crystal material. A display cover layer may be mounted in a housing adhesive. A touch sensor layer may be mounted under the display cover layer. An air gap may separate the upper polarizer from the touch sensor layer and display cover layer. Antireflection coatings may be formed on the lower surface of the display cover layer or touch sensor layer and may be formed on the upper surface of the upper polarizer. The antireflection coatings may include coatings formed from a polymer hard coat covered with a polymer layer having a different index of refraction and may include broadband antireflection coating material formed from textured polymer or other structure exhibiting a continuously varying index of refraction.
Abstract:
Touch sensor panels typically include a plurality of layers that can be stacked on top of each other. When the touch sensor panel is used in a bright environment, incident light can hit the interfaces between those layers of the stackup having mismatched refractive indices and can reflect off those interfaces. The light reflected from those interfaces can give rise to the appearance of fringes on the touch sensor panel, which can be visually distracting. In order to reduce the appearance of these fringes, embodiments of the disclosure are directed to the addition of an index matching passivation layer between a conductive layer of traces and an adhesive layer in the touch sensor panel stackup.
Abstract:
Devices and methods related to high-contrast liquid crystal displays (LCDs) are provided. For example, such an electronic device may include an LCD with two liquid crystal alignment layers not symmetric to one another and upper and lower polarizing layers respectively above and below the alignment layers. Light transmittance through the plurality of pixels may increase monotonically with gray scale voltage. The display may operate using a gray scale level 0 voltage higher than a minimum gray scale level 0 voltage capability of the display. Additionally or alternatively, liquid crystal molecular alignment axes of the two alignment layers may be offset from one another by an angle other than a multiple of 180 degrees. Additionally or alternatively, a first polarizing axis of the upper polarizing layer or a second polarizing axis of the lower polarizing layer, or both, may be neither parallel nor perpendicular to one of the liquid crystal molecular alignment axes.
Abstract:
A polarizer includes a polarizer component having a top surface and an opposite bottom surface. The bottom surface is configured to couple to a color filter layer for a liquid crystal display. The polarizer also includes a transparent conducting layer disposed over the top surface. The transparent conducting layer being configured to electrically shield the LCD from a touch panel. The polarizer further includes a coating layer disposed over the transparent conducting layer.
Abstract:
An electronic device may have a display such as a liquid crystal display. The display may have multiple layers of material such as a color filter layer and a thin-film transistor layer. An opaque masking layer may be formed on a display layer such as the color filter layer. In an inactive portion of the display, the opaque masking layer may form a rectangular ring that serves as a border region surrounding a rectangular active portion of the display. In the active portion of the display, the opaque masking layer may be patterned to from an opaque matrix that separates color filter elements in an array of color filter elements. The opaque masking layer and color filter elements may be formed from polymers such as photoresist. The opaque masking layer may include a black pigment such as carbon black. Color filter elements and opaque masking material may include multiple sublayers.