Abstract:
Molecular imaging of radioluminescent nanoparticle probes injected into biological tissue is performed by irradiated the tissue with ionizing radiation to induce radioluminescence at optical wavelengths, preferably at predetermined near infrared wavelengths. The optical light is detected and processed to determine a spatial distribution of the probes. The radioluminescent nanoparticles may be inorganic or organic phosphors, scintillators, or quantum dots. Imaging systems realizing this technique include tomographic systems using an x-ray beam to sequentially irradiate selected regions, systems with a radioactive source producing the ionizing radiation from outside the tissue, such as with a beam, or inside the tissue, such as with an endoscope or injected radiopharmaceutical. The optical signals may be detected by a photodetector array external to the tissue, a photodetector integrated with an endoscope or mammographic paddle, integrated into a capsule endoscope, or an array positioned near the biological tissue.
Abstract:
Molecular imaging of radioluminescent nanoparticle probes injected into biological tissue is performed by irradiated the tissue with ionizing radiation to induce radioluminescence at optical wavelengths, preferably at predetermined near infrared wavelengths. The optical light is detected and processed to determine a spatial distribution of the probes. The radioluminescent nanoparticles may be inorganic or organic phosphors, scintillators, or quantum dots. Imaging systems realizing this technique include tomographic systems using an x-ray beam to sequentially irradiate selected regions, systems with a radioactive source producing the ionizing radiation from outside the tissue, such as with a beam, or inside the tissue, such as with an endoscope or injected radiopharmaceutical. The optical signals may be detected by a photodetector array external to the tissue, a photodetector integrated with an endoscope or mammographic paddle, integrated into a capsule endoscope, or an array positioned near the biological tissue.
Abstract:
A method of characterizing a tissue sample is provided that includes injecting a tissue sample with radiotracers, where the radiotracers include beta-emitter radio tracers, the beta-emitter radio tracers emit beta particles according to a decay of the beta-emitter radio tracers, and measuring the beta particles or Cherenkov radiation from the beta particles in the tissue sample, and determining a condition of the radio tracers in the tissue sample according to the measured beta particles or the measured Cherenkov radiation, where the determined condition includes a depth and/or a concentration of the radiotracers in the tissue sample.