Abstract:
A method and apparatus for resolving floating point and integer ambiguities in a satellite position navigation system is disclosed. A rover station is periodically positioned at unknown locations and has a satellite receiver capable of receiving the navigation signals. By calculating relative position coordinates between a base station in a known location and the rover station, and by calculating other position parameters relative to the satellite position, a geometric constraint based on a measured elevation angle between the rover and base station can be incorporated into data computations and processing to help resolve carrier phase ambiguities. The elevation angle is measured by transmitting multiple laser beams to an optical sensor on the rover station. This technique results in greater precision in determining the location of the rover.
Abstract:
A laser measuring method in a laser measuring system, which comprises a rotary laser system for projecting a laser beam by rotary irradiation and at least one photodetection system having at least one photodetector for receiving the laser beam, comprising a step of emitting at least two fan-shaped laser beams by the rotary laser system, at least one of the fan-shaped laser beams being tilted, a step of receiving the laser beams at least at three known points by the photodetection system, a step of obtaining elevation angles with respect to the rotary laser system based on photodetection signals which are formed when the photodetector receives the laser beam, and a step of measuring an installing position of the rotary laser system based on elevation angles and position data at the three known points.
Abstract:
A method and apparatus for resolving floating point and integer ambiguities in a satellite position navigation system is disclosed. A rover station is periodically positioned at unknown locations and has a satellite receiver capable of receiving the navigation signals. By calculating relative position coordinates between a base station in a known location and the rover station, and by calculating other position parameters relative to the satellite position, a geometric constraint based on a measured elevation angle between the rover and base station can be incorporated into data computations and processing to help resolve carrier phase ambiguities. The elevation angle is measured by transmitting multiple laser beams to an optical sensor on the rover station. This technique results in greater precision in determining the location of the rover.