摘要:
A method for adjusting the average particle size of a spherical catalyst support, in particular a spherical catalyst support comprising a magnesium dihalide-ethanol-adduct, a spherical catalyst support obtained by the method, a solid catalyst composition comprising the spherical catalyst support, and the use of the solid catalyst composition for the polymerization of an olefins.
摘要:
The invention pertains to a catalyst useful for the epoxidation of an olefin. More particularly, the invention pertains to an improved catalyst useful for the epoxidation of ethylene to ethylene oxide. The catalyst has improved selectivity in the epoxidation process. The catalyst comprises a solid support having a surface, which has a first mode of pores which have a diameter ranging from about 0.01 μm to about 5 μm and having a differential pore volume peak in the range of from about 0.01 μm to about 5 μm. The surface then has a second mode of pores, different from the first mode of pores, which second mode of pores have a diameter ranging from about 1 μm to about 20 μm and have a differential pore volume peak in the range of from about 1 μm to about 20 μm. On the bimodal pore surface is a catalytically effective amount of silver or a silver-containing compound, a promoting amount of rhenium or a rhenium-containing compound, and a promoting amount of one or more alkali metals or alkali-metal-containing compounds.
摘要:
The invention pertains to a catalyst useful for the epoxidation of an olefin. More particularly, the invention pertains to an improved catalyst useful for the epoxidation of ethylene to ethylene oxide. The catalyst has improved selectivity in the epoxidation process. The catalyst comprises a solid support having a surface, which has a first mode of pores which have a diameter ranging from about 0.01 μm to about 5 μm and having a differential pore volume peak in the range of from about 0.01 μm to about 5 μm. The surface then has a second mode of pores, different from the first mode of pores, which second mode of pores have a diameter ranging from about 1 μm to about 20 μm and have a differential pore volume peak in the range of from about 1 μm to about 20 μm. On the bimodal pore surface is a catalytically effective amount of silver or a silver-containing compound, a promoting amount of rhenium or a rhenium-containing compound, and a promoting amount of one or more alkali metals or alkali-metal-containing compounds.
摘要:
An electron donor composition comprising a dihydroanthracene derivative and a phthalate ester. Furthermore, a solid catalyst composition comprising the electron donor composition for use in α-olefin polymerisation. Further, a process for the production of a polymer containing α-olefin monomer units with the electron donor composition.
摘要:
A method to achieve a controlled start-up temperature of an expoxidation process which exceeds the maximum achievable temperature of the epoxidation reactor relative to using an external heat source. The method of the present invention employs an oxidation reaction within the reactor to bring the temperature of the reactor to a temperature that is suitable for conditioning a high selectivity catalyst. The method of the present invention includes first bringing a reactor including a high selectivity catalyst to a first temperature using the external heat source to the reactor, while staying within the reactor design limitations and maintaining a gas flow to the reactor that is within 25 to 100% of the design rates. Once the reactor has achieved the first temperature, at least an olefin, e.g., ethylene, and then oxygen are introduced to the reactor feed gas. The olefin and oxygen concentrations are adjusted to have a heat of reaction that will allow raising the reactor gas flow to 100% of design and then have sufficient heat of reaction to raise the reactor temperature to a second temperature which is greater than the first temperature and greater than the temperature of the reactor achievable by the external heat source.
摘要:
The invention pertains to a catalyst useful for the epoxidation of an olefin. More particularly, the invention pertains to an improved catalyst useful for the epoxidation of ethylene to ethylene oxide. The catalyst has improved selectivity in the epoxidation process. The catalyst comprises a solid support having a surface, which has a first mode of pores which have a diameter ranging from about 0.01 μm to about 5 μm and having a differential pore volume peak in the range of from about 0.01 μm to about 5 μm. The surface then has a second mode of pores, different from the first mode of pores, which second mode of pores have a diameter ranging from about 1 μm to about 20 μm and have a differential pore volume peak in the range of from about 1 μm to about 20 μm. On the bimodal pore surface is a catalytically effective amount of silver or a silver-containing compound, a promoting amount of rhenium or a rhenium-containing compound, and a promoting amount of one or more alkali metals or alkali-metal-containing compounds.
摘要:
The invention pertains to a catalyst useful for the epoxidation of an olefin. More particularly, the invention pertains to an improved catalyst useful for the epoxidation of ethylene to ethylene oxide. The catalyst has improved selectivity in the epoxidation process. The catalyst comprises a solid support having a surface, which has a first mode of pores which have a diameter ranging from about 0.01 μm to about 5 μm and having a differential pore volume peak in the range of from about 0.01 μm to about 5 μm. The surface then has a second mode of pores, different from the first mode of pores, which second mode of pores have a diameter ranging from about 1 μm to about 20 μm and have a differential pore volume peak in the range of from about 1 μm to about 20 μm. On the bimodal pore surface is a catalytically effective amount of silver or a silver-containing compound, a promoting amount of rhenium or a rhenium-containing compound, and a promoting amount of one or more alkali metals or alkali-metal-containing compounds.
摘要:
A method to achieve a controlled start-up temperature of an expoxidation process which exceeds the maximum achievable temperature of the epoxidation reactor relative to using an external heat source. The method of the present invention employs an oxidation reaction within the reactor to bring the temperature of the reactor to a temperature that is suitable for conditioning a high selectivity catalyst. The method of the present invention includes first bringing a reactor including a high selectivity catalyst to a first temperature using the external heat source to the reactor, while staying within the reactor design limitations and maintaining a gas flow to the reactor that is within 25 to 100% of the design rates. Once the reactor has achieved the first temperature, at least an olefin, e.g., ethylene, and then oxygen are introduced to the reactor feed gas. The olefin and oxygen concentrations are adjusted to have a heat of reaction that will allow raising the reactor gas flow to 100% of design and then have sufficient heat of reaction to raise the reactor temperature to a second temperature which is greater than the first temperature and greater than the temperature of the reactor achievable by the external heat source.