Abstract:
The present invention is a chemical stripper formulation for removing photoresist and the residue of etching and ashing of electronic device substrates, comprising: deionized water, acetic acid, polyethylene glycol, dipropylene glycol monomethyl ether and ammonium fluoride. The present invention is also a process for removing photoresist and the residue of etching and ashing of electronic device substrates by contacting the substrate with a formulation, comprising: deionized water, acetic acid, polyethylene glycol, dipropylene glycol monomethyl ether and ammonium fluoride.
Abstract:
The present invention, in a preferred embodiment, is a photoresist stripper formulation, comprising: Hydroxylamine ; Water; a solvent selected from the group consisting of dimethylsulfoxide; N-methylpyrrrolidine; dimethylacetamide; dipropylene glycol monomethyl ether; monoethanolamine and mixtures thereof; a base selected from the group consisting of choline hydroxide, monoethanolamine, tetramethylammonium hydroxide; aminoethylethanolamine and mixtures thereof; a metal corrosion inhibitor selected from the group consisting of catechol, gallic acid, lactic acid, benzotriazole and mixtures thereof; and a bath life extending agent selected from the group consisting of glycerine, propylene glycol and mixtures thereof. The present invention is also a method for using formulations as exemplified in the preferred embodiment.
Abstract:
Methods of reducing the capillary forces experienced by fragile high aspect ratio structures during drying to substantially prevent damage to said high aspect ratio structures during drying. They include modifying the surface of the high aspect ratio structures such that the forces are sufficiently minimized and as such less than 10% of the high aspect ratio features will have bent or collapsed during drying of the structure having said features thereon.
Abstract:
The present invention, in a preferred embodiment, is a photoresist stripper formulation, comprising: Hydroxylamine ; Water; a solvent selected from the group consisting of dimethylsulfoxide; N-methylpyrrrolidine; dimethylacetamide; dipropylene glycol monomethyl ether; monoethanolamine and mixtures thereof; a base selected from the group consisting of choline hydroxide, monoethanolamine, tetramethylammonium hydroxide; aminoethylethanolamine and mixtures thereof; a metal corrosion inhibitor selected from the group consisting of catechol, gallic acid, lactic acid, benzotriazole and mixtures thereof; and a bath life extending agent selected from the group consisting of glycerine, propylene glycol and mixtures thereof. The present invention is also a method for using formulations as exemplified in the preferred embodiment.