Abstract:
An unsymmetrical dipole antenna includes a grounding element, a radiating element, and a feed-in wire. The grounding element includes a first short side metal plane and a first long side metal plane. The radiating element includes a second short side metal plane and a second long side metal plane. The feed-in wire includes a metal wire, coupled to the second short side metal plane for transmitting a feed-in signal; an insulation layer, covering the metal wire; a metal weave, covering the insulation layer, having one terminal coupled to the first short side metal plane of the grounding element, and another terminal coupled to a system ground of the wireless communication device; and a protective layer, covering the metal weave. A size of the grounding element and a size of the radiating element are irrelative.
Abstract:
A dual-band circularly polarized antenna is disclosed, which includes a ground metal plate, a dielectric substrate, a first microstrip radiation portion and a second microstrip radiation portion. The dielectric substrate is formed on the ground metal plate. The first microstrip radiation portion is formed on the dielectric substrate and has at least one pair of symmetric truncated corners. The second microstrip radiation portion is formed on the dielectric substrate and includes a plurality of radiation units. Each of the plurality of radiation units is extended from the first microstrip radiation portion along a first direction.
Abstract:
A game device includes a processor, a display device having a screen displaying a plurality of enemy vessel images, an invisible vessel image and a target-finding frame, and a joystick device. The enemy vessel images and the invisible vessel image are moving across the screen. The invisible vessel image is concealed in the screen. The joystick device controls movement of the target-finding frame in the screen. The processor is capable of transforming the invisible vessel image into a visible vessel image when the target-finding frame is moved to overlap the invisible vessel image. In case the enemy vessel images and the invisible vessel image are attacked, the processor executes in such a manner to blow the enemy vessel images and the invisible vessel image off the screen.
Abstract:
An unsymmetrical dipole antenna includes a grounding element, a radiating element, and a feed-in wire. The grounding element includes a first short side metal plane and a first long side metal plane. The radiating element includes a second short side metal plane and a second long side metal plane. The feed-in wire includes a metal wire, coupled to the second short side metal plane for transmitting a feed-in signal; an insulation layer, covering the metal wire; a metal weave, covering the insulation layer, having one terminal coupled to the first short side metal plane of the grounding element, and another terminal coupled to a system ground of the wireless communication device; and a protective layer, covering the metal weave. A size of the grounding element and a size of the radiating element are irrelative.
Abstract:
An antenna structure for wearable electronic device has a device casing, an antenna ground structure joined with the device casing, a carrier connected to the device casing, and an antenna radiation structure joined with the carrier. Thereby, the antenna structure can be integrated into the original structure of a wearable device so that the volume of the wearable device can be reduced, which solves the difficulty in reducing the volume of a wireless communication device with a requirement of an antenna disposition in the prior art. In addition, a wearable wireless electronic device has the antenna structure so as to have the advantage of smaller volume relative to a wearable wireless electronic device in the prior art.
Abstract:
A dual-band circularly polarized antenna is disclosed, which includes a ground metal plate, a dielectric substrate, a first microstrip radiation portion and a second microstrip radiation portion. The dielectric substrate is formed on the ground metal plate. The first microstrip radiation portion is formed on the dielectric substrate and has at least one pair of symmetric truncated corners. The second microstrip radiation portion is formed on the dielectric substrate and includes a plurality of radiation units. Each of the plurality of radiation units is extended from the first microstrip radiation portion along a first direction.
Abstract:
An antenna device is provided and includes a bottom, two monopole antennas, and a cover assembled with the bottom. A projection plane is defined perpendicular to the bottom. The two monopole antennas substantially symmetrically protrude from the bottom, and a gap is formed between the two monopole antennas. Projections of the two monopole antennas on the projection plane intersect with each other. Each of the two monopole antennas includes a first frequency receiving portion adjacent to the bottom, a second frequency receiving portion, and a connection portion located between the first frequency receiving portion and the second frequency receiving portion. A slot is formed through the connection portion to adjust a received frequency of the first or second frequency receiving portion. An accommodating space is formed between the cover and the bottom to accommodate the two monopole antennas.
Abstract:
An antenna module includes an antenna set, a feeding point and a ground plane. The antenna set includes a first antenna, and a second antenna. The first antenna has a first resonant frequency and the second antenna a second resonant frequency.
Abstract:
An antenna device is provided and includes a bottom, two monopole antennas, and a cover assembled with the bottom. A projection plane is defined perpendicular to the bottom. The two monopole antennas substantially symmetrically protrude from the bottom, and a gap is formed between the two monopole antennas. Projections of the two monopole antennas on the projection plane intersect with each other. Each of the two monopole antennas includes a first frequency receiving portion adjacent to the bottom, a second frequency receiving portion, and a connection portion located between the first frequency receiving portion and the second frequency receiving portion. A slot is formed through the connection portion to adjust a received frequency of the first or second frequency receiving portion. An accommodating space is formed between the cover and the bottom to accommodate the two monopole antennas.