Abstract:
A method of fabricating an interconnect line comprises forming a wall, depositing an etch mask having a thickness that decreases towards a bottom of the wall, and isotropically etching the wall at the bottom to form the interconnect line having a pre-determined gap between the substrate and a bottom of the line.
Abstract:
Methods and compositions for treating a wafer's layer stack following metal etching are provided. The methods involve providing a semiconductor wafer layer stack in a plasma processing system following metal etch, and treating the layer stack with one or more process gases in a plasma processing system, where at least one of the process gases contains helium and water and/or oxygen, or comparable gases. The methods and compositions reduce corrosion and polymer fence for a wafer's layer stack relative to conventional passivation and strip processes without helium, decrease the time necessary for passivation, increase the strip rate, and/or improve strip uniformity.
Abstract:
Disclosed herein is a method of etching a trench in silicon overlying a dielectric material which reduces or substantially eliminates notching at the base of the trench, while reducing scalloping on the sidewalls of the trench. The method comprises etching a first portion of a trench by exposing a silicon substrate, through a patterned masking layer, to a plasma generated from a fluorine-containing gas. This etching is followed by a polymer deposition step comprising exposing the substrate to a plasma generated from a gas which is capable of forming a polymer on etched silicon surfaces. The etching and polymer deposition steps are repeated for a number of cycles, depending on the desired depth of the first portion of the trench. The final portion of the trench is etched by exposing the silicon to a plasma generated from a combination of a fluorine-containing gas and a polymer-forming gas.
Abstract:
A method of forming a notch silicon-containing gate structure is disclosed. This method is particularly useful in forming a T-shaped silicon-containing gate structure. A silicon-containing gate layer is etched to a first desired depth using a plasma generated from a first source gas. During the etch, etch byproducts deposit on upper sidewalls of the silicon-containing gate layer which are exposed during etching, forming a first passivation layer which protects the upper silicon-containing gate layer sidewalls from etching during subsequent processing steps. A relatively high substrate bias power is used during this first etch step to ensure that the passivation layer adheres properly to the upper silicon-containing gate sidewalls. The remaining portion of the silicon-containing gate layer is etched at a lower bias power using a plasma generated from a second source gas which selectively etches the silicon-containing gate layer relative to the underlying gate dielectric layer, whereby a lower sidewall of the silicon-containing gate layer is formed and an upper surface of the gate dielectric layer is exposed. The etch stack is then exposed to a plasma generated from a third source gas which includes nitrogen, whereby a second, nitrogen-containing passivation layer is formed on the exposed sidewalls of the silicon-containing gate layer. Subsequently, a notch is etched in the lower sidewall of the silicon-containing gate layer. The method of the invention provides control over both the height and the width of the notch, while providing a marked improvement in notch critical dimension uniformity between isolated and dense feature areas of the substrate.