摘要:
One embodiment of an inclinometer is disclosed comprising lines on a sticker applied to a ski pole shaft. Each line represents a unique slope angle, and may be identified by a number to indicate the slope angle, such that the lines can be used to visually identify slope angle when the ski pole shaft is held vertically. Slope angle measurements can be taken by sighting a side profile of the slope, or by sighting up or down the slope, or by direct contact measurement with the slope. Other embodiments are described and shown, including one with lines printed directly onto a ski pole shaft, and one that's applied to the cylindrical surface of a water bottle rather than to that of a ski pole shaft.
摘要:
The application of optical microstructures improve the quality of light available to the viewer of an optical display system, or any display which works on the concept of moving one surface into direct contact or close proximity of a light guide to extract light through frustrated total internal reflection. Certain ones of the microstructures can act to assist in overcoming stiction between the surface and the light guide.
摘要:
The application of optical microstructures improve the quality of light available to the viewer of an optical display system, or any display which works on the concept of moving one surface into direct contact or close proximity of a light guide to extract light through frustrated total internal reflection. Certain ones of the microstructures can act to assist in overcoming stiction between the surface and the light guide.
摘要:
The present invention provides an apparatus that includes a waveguide and one or more pixels deployed adjacent the top surface of the waveguide which contains TIR light therein. Each pixel includes a deformable active layer having a first conductor and a driver electronics layer having a second conductor. The driver electronics layer is deployed in spaced-apart relation to the active layer and opposite the waveguide. In a quiescent state of a pixel, the active layer is in contact or near contact with the top surface of the waveguide so as to optically couple light out via FTIR (i.e., pixel's ON state). To actuate the pixel, the electronics layer is configured to selectively apply an electrical potential difference to the second conductor thereby causing the active layer to move away from the top surface so as to prevent the optical coupling of light out of the waveguide (i.e., pixel's OFF state).
摘要:
The optical performance is enhanced of display systems that use field sequential color and pulse width modulation to generate color and color gray scale values. Such enhancement may be achieved by various data encoding methods disclosed herein that may include temporal redistribution of bit values to mitigate color motional artifacts associated with field sequential color-based display systems, selective combination of intensity modulation, pulse width modulation, and/or the noncontiguous sequencing of primary colors. There is further an intelligent real-time dynamic manipulation of gray scale values in portions of an image that are computationally determined to be images of objects moving against a global background, so as to temporally front load or concentrate the bits comprising such moving objects and thereby further mitigate said motional artifacts using both actual and virtual aggregate pulse truncation across all primary colors being modulated.
摘要:
The application of optical microstructures improve the quality of light available to the viewer of an optical display system, or any display which works on the concept of moving one surface into direct contact or close proximity of a light guide to extract light through frustrated total internal reflection. Certain ones of the microstructures can act to assist in overcoming stiction between the surface and the light guide.
摘要:
An electromechanical dynamic force profile articulating mechanism for recovering or emulating true parallel plate capacitor actuation behaviors from deformable membranes used in MEMS systems. The curved deformation of flexible membranes causes their MEMS behavior to deviate from known interactions between rigid plates that maintain geometric parallelism during ponderomotive actuation. The present invention teaches three methods for reacquiring parallel plate behavior: superaddition or in situ integration of a rigid region within or upon the deformable MEMS membrane; creation of isodyne regions to secure parallelism by altering the force profile upon the membrane by introducing tuned and shaped voids within the conductive region associated with the membrane; and a hybrid composite approach wherein the conductive region is deposited after deposition of a raised rigid zone, thereby emulating isodyne behavior due to the increased inter-conductor distance in the vicinity of the rigid zone, in conjunction with rigidity benefits stemming directly from said zone.
摘要:
The encoding and processing of data for many applications can be rendered more tractable when the encoding method can independently manipulate two or more parameters that result, by conjunction, in an accurately posted data value precisely where it is expected. From a data standpoint, this would entail dividing an n-width digital word into separate fractional words and processing the subsets consecutively and independently, where the distinction between these fractional words has an explicit bearing on the information being borne. For example, an 8-bit word can be decomposed into two 4-bit words, half of which are processed while the transmission source is at full intensity, the other half being processed while the transmission source is at 1/16th intensity, thereby recovering the entire dynamic range of the original 8-bit word while reducing the bandwidth and cycle speed necessary for the transducer to be driven by the input signal.
摘要:
The application of microstructures which improve the quality of light available to the viewer of an optical display system, or any display which works on the concept of moving one surface into direct contact or close proximity of a light guide to extract light through frustrated total internal reflection. Optical microstructures are introduced on one or both of the surfaces of the active layer to enhance its performance. Since the active layer has both an input and an output function, means for enhancing both are presented. The input function to the active layer occurs on the internal surface, so this is where the present invention adds a collector-coupler, a means for facilitating the migration of light from the waveguide into the active layer. The output function occurs on the external surface, where the present invention adds a collimator, a means for both increasing the probability that a light wave will be released from the active layer, and improving the apparent intensity by redirecting light waves so that more of them reach the viewer. Compound microlenses on the internal surface of the active layer can serve as both collector-couplers and collimators, substantially improving light extraction from the light guide and light distribution to the viewer. Depositing a reflective or colored material in the interstitial spaces between these compound microlenses improves the contrast ratio and mitigate pixel cross-talk. The opaque material can be conductive for use in actuating the display.
摘要:
The present invention provides an apparatus that includes a waveguide and one or more pixels deployed adjacent the top surface of the waveguide which contains TIR light therein. Each pixel includes a deformable active layer having a first conductor and a driver electronics layer having a second conductor. The driver electronics layer is deployed in spaced-apart relation to the active layer and opposite the waveguide. In a quiescent state of a pixel, the active layer is in contact or near contact with the top surface of the waveguide so as to optically couple light out via FTIR (i.e., pixel's ON state). To actuate the pixel, the electronics layer is configured to selectively apply an electrical potential difference to the second conductor thereby causing the active layer to move away from the top surface so as to prevent the optical coupling of light out of the waveguide (i.e., pixel's OFF state).