Abstract:
An exemplary liquid crystal display panel includes a substrate and first conductive wires. The first conductive wires are arranged at a surface of the substrate. Each of the first conductive wires includes a plurality of first connecting portions, a plurality of second connecting portions and a conductive portion with a plurality of conductive particles. The conductive portion is sandwiched between the first connecting portions and the second connecting portions, thus electrically connecting the first connecting portions to the second connecting portions. A method for manufacturing the liquid crystal display panel is also provided.
Abstract:
A liquid crystal display panel includes a substrate, a thin film transistor array, a circuit, and a dummy circuit. One surface of the substrate is divided into a display region and a wiring region. The thin film transistor array is formed on the display region. The circuit and the dummy circuit are formed on the wiring region, the dummy circuit is adjacent to the circuit, and the circuit and the dummy circuit protrude from the substrate.
Abstract:
A transceiver includes a switching unit configurable for isolating an input of a receiver from an output of a transmitter during a local calibration mode. A known signal present at the output at a first power level during the calibration mode will also be present at the input at a second power level lower than the first power level and will be converted by the quadrature demodulator. A compensation factor is estimated for compensating the receiver section for imbalances in the in-phase and quadrature phase signals resulting from conversion of the known signal. Remote calibration is implemented using a method for remotely compensating for I-Q imbalance wherein a data packet having a known signal is transmitted to a receiver for conversion by a quadrature demodulator and compensation factors are estimated for compensating for imbalances in the in-phase and quadrature phase signals resulting from conversion of the known signal.
Abstract:
A system or method for calibrating an RF transmitter includes inputting a test tone to the RF transmitter. LO leakage calibration is performed on an output of the RF transmitter with the test tone inputted thereto, in order to determine a minimum LO leakage. Thereafter, sideband image calibration is performed on the output of the RF transmitter with the test tone inputted thereto, in order to determine a minimum sideband image. Operational values for the RF transmitter are stored in memory based on the detected minimum LO leakage and the detected minimum sideband image, to be used during a normal operation mode of the RF transmitter.
Abstract:
The invention monitors a communication channel and estimates its characteristics from time to time, thus providing a dynamic estimate of channel characteristics. Based on the channel characteristics, a control processor calculates a preferred configuration of digital (and optionally, analog) signal processing to best manage the available energy for the present channel characteristics. The selected configuration is then down-loaded into communication modules stored in extra memory during runtime. The communication modules preferably include a one or more of: a reconfigurable forward error correcting codec (with adjustable code lengths and a plurality of code choices); a reconfigurable interleaver with adjustable depth; a decision feedback equalizer (DFE) with a reconfigurable number of taps; maximum likelihood sequence estimator with an adjustable number of states; a frequency hopping coder with an adjustable number of hops or hop rate; and a direct-sequence (or direct sequence spread spectrum) codec with an adjustable number of chips per bit.
Abstract:
A local oscillator (LO) buffer circuit comprises first and second LO buffers arranged in a cross coupled configuration. The first LO buffer generates in-phase output signals in response to in-phase input signals, and quadrature output signals from the second LO buffer. The second LO buffer generates the quadrature output signals in response to quadrature input signals and the in-phase output signals. The LO buffers may include inductive loads. The LO buffers may include MOS transistors or bipolar junction transistors.
Abstract:
An exemplary liquid crystal display panel includes a substrate and first conductive wires. The first conductive wires are arranged at a surface of the substrate. Each of the first conductive wires includes a plurality of first connecting portions, a plurality of second connecting portions and a conductive portion with a plurality of conductive particles. The conductive portion is sandwiched between the first connecting portions and the second connecting portions, thus electrically connecting the first connecting portions to the second connecting portions. A method for manufacturing the liquid crystal display panel is also provided.
Abstract:
A phase lock loop (PLL) includes a calibration loop for calibrating a tank circuit for capacitance variation through process variations of manufacturing an integrated circuit including the PLL. A capacitance profile for setting the frequency of the PLL at a process comer is stored. At power up, or after an idle time, a calibration is performed at two frequencies. The capacitances of operating the phase lock loop at the two frequencies are determined and stored. During a frequency change, the capacitance of operating the PLL is determined from the capacitance profile and stored capacitances. The capacitance of the PLL is presumed to change linearly with frequency and the two stored capacitances are used to determine a difference capacitance at the selected frequency by linear interpolating between the two stored capacitances, which is added to the capacitance in the capacitance profile at the selected frequency to generate an operating capacitance.
Abstract:
A local oscillator (LO) buffer circuit comprises first and second LO buffers arranged in a cross coupled configuration. The first LO buffer generates in-phase output signals in response to in-phase input signals, and quadrature output signals from the second LO buffer. The second LO buffer generates the quadrature output signals in response to quadrature input signals and the in-phase output signals. The LO buffers may include inductive loads. The LO buffers may include MOS transistors or bipolar junction transistors.
Abstract:
A liquid crystal display panel includes a substrate, a thin film transistor array, a circuit, and a dummy circuit. One surface of the substrate is divided into a display region and a wiring region. The thin film transistor array is formed on the display region. The circuit and the dummy circuit are formed on the wiring region, the dummy circuit is adjacent to the circuit, and the circuit and the dummy circuit protrude from the substrate.