Abstract:
Method for communicating with a network device. A data packet is provided, which includes a header, a payload, and a trailer. The data packet includes an error detection code derived at least partially based on data in the data packet. The error detection code is modified using a reversible function to provide a marked data packet. This marked data packet is sent to the network device.
Abstract:
An apparatus for testing an IC device includes a test signal generator for generating a predefined sequence of test signals that are input to the IC device. A timing skew monitor is provided for monitoring the test signals input in the IC device and a signal output from the IC device for a predetermined time period, and creating an array indicating an execution or a nonexecution of signal timing combinations of one of the test signals relative to at least one of the other test signals within the predetermined time period by the IC device. A determination as to whether the desired signal timing combinations of the test signals have been executed by the IC device is made by an operator.
Abstract:
An apparatus for testing an IC device includes a test signal generator for generating a predefined sequence of test signals that are input to the IC device. A timing skew monitor is provided for monitoring the test signals input in the IC device and a signal output from the IC device for a predetermined time period, and creating an array indicating an execution or a nonexecution of signal timing combinations of one of the test signals relative to at least one of the other test signals within the predetermined time period by the IC device. A determination as to whether the desired signal timing combinations of the test signals have been executed by the IC device is made by an operator.
Abstract:
In a remote management messenger system (RMMS), a method for screening a packet-based call originated from a caller via a caller telecommunication device (CTD) to a receiver telecommunication device (RTD) via the RMMS. The method includes activating, if a receiver associated with the RTD does not respond to the packet-based call within a predetermined time period, an answering-and-recording function (ARF) associated with the RMMS to enable the ARF to receive and record packets pertaining to the packet-based call while permitting the receiver to continue to hear the caller. The method also includes, if the receiver responds to the packet-based call after the ARF is activated, permitting the receiver to continue the packet-based call with the caller.
Abstract:
One embodiment disclosed relates to a method for remote mirroring of network traffic. A data packet to be remotely mirrored is received by an entry device. The entry device is pre-configured with a destination address to which to mirror the data packet. The packet to be mirrored is encrypted. An encapsulating header is generated and added to encapsulate the encrypted packet. The encapsulating header includes the aforementioned destination address. The encapsulated packet is forwarded to an exit device associated with the destination address, where the packet may be decapsulated, and then decrypted, before being sent out of a port. In another embodiment, the entry and exit devices are remotely configured with encryption and decryption keys, respectively.
Abstract:
In one embodiment of the invention, a method for prioritizing network packets, includes: comparing a packet with at least one copy rule; and if the packet matches the copy rule, then buffering the packet in a queue. The method further includes: processing the packet after buffering the packet in the queue.
Abstract:
In an embodiment of the invention, a method and apparatus for hardware throttling of network traffic, includes: receiving a packet; and preventing the packet from being copied, based on a rate field value associated with a new address in the packet information in the packet. The packet is not copied even if a copy rule is triggered.
Abstract:
A system for performing an input processing function on a data packet. The system has an input port to which a first processor is coupled, which determines an attribute of the data packet, and a memory coupled to the first processor having a number of queues. The data packet is assigned to one of the queues based upon the attribute determined, which may be an indicator of a priority characterizing said data packet. Input processing is thus performed in a fixed amount of time, deferring variable latency operations until after the input memory.
Abstract:
A method for testing a network device having modules for receiving and sending data packets in a network includes generating in the network device at least one internal data structure associated with a data packet received by the network device from the network. A predefined action on the network device is then preformed responsive to the internal data structure indicating that the data packet satisfies a predefined condition.
Abstract:
In one embodiment of the invention, a method for prioritizing network packets, includes: comparing a packet with at least one copy rule; and if the packet matches the copy rule, then buffering the packet in a queue. The method further includes: processing the packet after buffering the packet in the queue.