Abstract:
A data access system has host computers having front-end controllers nFE_SAN connected via a bus or network interconnect to back-end storage controllers nBE_SAN, and physical disk drives connected via network interconnect to the nBE_SANs to provide a distributed, high performance, policy based or dynamically reconfigurable, centrally managed, data storage acceleration system. The hardware and software architectural solutions eliminate BE_SAN controller bottlenecks and improve performance and scalability. In an embodiment, the nBE_SAN (BE_SAN) firmware recognize controller overload conditions, informs Distributed Resource Manager (DRM), and, based on the DRM provided optimal topology information, delegates part of its workload to additional controllers. The nFE_SAN firmware and additional hardware using functionally independent and redundant CPUs and memory that mitigate single points of failure and accelerates write performance. The nFE_SAN and FE_SAN controllers facilitate Converged I/O Interface by simultaneously supporting storage I/O and network traffic.
Abstract:
A data access system has host computers having front-end controllers nFE_SAN connected via a bus or network interconnect to back-end storage controllers nBE_SAN, and physical disk drives connected via network interconnect to the nBE_SANs to provide a distributed, high performance, policy based or dynamically reconfigurable, centrally managed, data storage acceleration system. The hardware and software architectural solutions eliminate BE_SAN controller bottlenecks and improve performance and scalability. In an embodiment, the nBE_SAN (BE_SAN) firmware recognize controller overload conditions, informs Distributed Resource Manager (DRM), and, based on the DRM provided optimal topology information, delegates part of its workload to additional controllers. The nFE_SAN firmware and additional hardware using functionally independent and redundant CPUs and memory that mitigate single points of failure and accelerates write performance. The nFE_SAN and FE_SAN controllers facilitate Converged I/O Interface by simultaneously supporting storage I/O and network traffic.
Abstract:
A data access system has host computers having front-end controllers nFE_SAN connected via a bus or network interconnect to back-end storage controllers nBE_SAN, and physical disk drives connected via network interconnect to the nBE_SANs to provide a distributed, high performance, policy based or dynamically reconfigurable, centrally managed, data storage acceleration system. The hardware and software architectural solutions eliminate BE_SAN controller bottlenecks and improve performance and scalability. In an embodiment, the nBE_SAN (BE_SAN) firmware recognize controller overload conditions, informs Distributed Resource Manager (DRM), and, based on the DRM provided optimal topology information, delegates part of its workload to additional controllers. The nFE_SAN firmware and additional hardware using functionally independent and redundant CPUs and memory that mitigate single points of failure and accelerates write performance. The nFE_SAN and FE_SAN controllers facilitate Converged I/O Interface by simultaneously supporting storage I/O and network traffic.
Abstract:
A data access system has host computers having front-end controllers nFE_SAN connected via a bus or network interconnect to back-end storage controllers nBE_SAN, and physical disk drives connected via network interconnect to the nBE_SANs to provide a distributed, high performance, policy based or dynamically reconfigurable, centrally managed, data storage acceleration system. The hardware and software architectural solutions eliminate BE_SAN controller bottlenecks and improve performance and scalability. In an embodiment, the nBE_SAN (BE_SAN) firmware recognize controller overload conditions, informs Distributed Resource Manager (DRM), and, based on the DRM provided optimal topology information, delegates part of its workload to additional controllers. The nFE_SAN firmware and additional hardware using functionally independent and redundant CPUs and memory that mitigate single points of failure and accelerates write performance. The nFE_SAN and FE_SAN controllers facilitate Converged I/O Interface by simultaneously supporting storage I/O and network traffic.
Abstract:
A Storage Area Network (SAN) system has host computers, front-end SAN controllers (FE_SAN) connected via a bus or network interconnect to back-end SAN controllers (BE_SAN), and physical disk drives connected via network interconnect to the BE_SANs to provide distributed high performance centrally managed storage. Described are hardware and software architectural solutions designed to eliminate I/O traffic bottlenecks, improve scalability, and reduce the overall cost of SAN systems. In an embodiment, the BE_SAN has firmware to recognize when, in order to support a multidisc volume, such as a RAID volume, it is configured to support, it requires access to a physical disk attached to a second BE_SAN; when such a reference is recognized it passes assess commands to the second BE_SAN. Buffer memory of each FE_SAN is mapped into application memory space to increase access speed, where multiple hosts share an LBA the BE_SAN tracks writes and invalidates the unwritten buffers.
Abstract:
A Storage Area Network (SAN) system has host computers, front-end SAN controllers (FE_SAN) connected via a bus or network interconnect to back-end SAN controllers (BE_SAN), and physical disk drives connected via network interconnect to the BE_SANs to provide distributed high performance centrally managed storage. Described are hardware and software architectural solutions designed to eliminate I/O traffic bottlenecks, improve scalability, and reduce the overall cost of SAN systems. In an embodiment, the BE_SAN has firmware to recognize when, in order to support a multidisc volume, such as a RAID volume, it is configured to support, it requires access to a physical disk attached to a second BE_SAN; when such a reference is recognized it passes assess commands to the second BE_SAN. Further, the BE_SAN has firmware to make use of the physical disk attached to the second BE_SAN as a hot-spare for RAID operations.
Abstract:
A data access system has host computers having front-end controllers nFE_SAN connected via a bus or network interconnect to back-end storage controllers nBE_SAN, and physical disk drives connected via network interconnect to the nBE_SANs to provide a distributed, high performance, policy based or dynamically reconfigurable, centrally managed, data storage acceleration system. The hardware and software architectural solutions eliminate BE_SAN controller bottlenecks and improve performance and scalability. In an embodiment, the nBE_SAN (BE_SAN) firmware recognize controller overload conditions, informs Distributed Resource Manager (DRM), and, based on the DRM provided optimal topology information, delegates part of its workload to additional controllers. The nFE_SAN firmware and additional hardware using functionally independent and redundant CPUs and memory that mitigate single points of failure and accelerates write performance. The nFE_SAN and FE_SAN controllers facilitate Converged I/O Interface by simultaneously supporting storage I/O and network traffic.
Abstract:
A Storage Area Network (SAN) system has host computers, front-end SAN controllers (FE_SAN) connected via a bus or network interconnect to back-end SAN controllers (BE_SAN), and physical disk drives connected via network interconnect to the BE_SANs to provide distributed high performance centrally managed storage. Described are hardware and software architectural solutions designed to eliminate I/O traffic bottlenecks, improve scalability, and reduce the overall cost of SAN systems. In an embodiment, the BE_SAN has firmware to recognize when, in order to support a multidisc volume, such as a RAID volume, it is configured to support, it requires access to a physical disk attached to a second BE_SAN; when such a reference is recognized it passes assess commands to the second BE_SAN. Buffer memory of each FE_SAN is mapped into application memory space to increase access speed, where multiple hosts share an LBA the BE_SAN tracks writes and invalidates the unwritten buffers.
Abstract:
A Storage Area Network (SAN) system has host computers, front-end SAN controllers (FE_SAN) connected via a bus or network interconnect to back-end SAN controllers (BE_SAN), and physical disk drives connected via network interconnect to the BE_SANs to provide distributed high performance centrally managed storage. Described are hardware and software architectural solutions designed to eliminate I/O traffic bottlenecks, improve scalability, and reduce the overall cost of SAN systems. In an embodiment, the BE_SAN has firmware to recognize when, in order to support a multidisc volume, such as a RAID volume, it is configured to support, it requires access to a physical disk attached to a second BE_SAN; when such a reference is recognized it passes assess commands to the second BE_SAN. Buffer memory of each FE_SAN is mapped into application memory space to increase access speed, where multiple hosts share an LBA the BE_SAN tracks writes and invalidates the unwritten buffers.
Abstract:
A data access system has host computers having front-end controllers nFE_SAN connected via a bus or network interconnect to back-end storage controllers nBE_SAN, and physical disk drives connected via network interconnect to the nBE_SANs to provide a distributed, high performance, policy based or dynamically reconfigurable, centrally managed, data storage acceleration system. The hardware and software architectural solutions eliminate BE_SAN controller bottlenecks and improve performance and scalability. In an embodiment, the nBE_SAN (BE_SAN) firmware recognize controller overload conditions, informs Distributed Resource Manager (DRM), and, based on the DRM provided optimal topology information, delegates part of its workload to additional controllers. The nFE_SAN firmware and additional hardware using functionally independent and redundant CPUs and memory that mitigate single points of failure and accelerates write performance. The nFE_SAN and FE_SAN controllers facilitate Converged I/O Interface by simultaneously supporting storage I/O and network traffic.