Operation of a noise cancellation device
    1.
    发明授权
    Operation of a noise cancellation device 有权
    噪声消除装置的操作

    公开(公告)号:US09054666B2

    公开(公告)日:2015-06-09

    申请号:US13448428

    申请日:2012-04-17

    CPC分类号: H03G3/32

    摘要: A method for improving the performance of a noise cancellation device, the method includes determining whether one or more noise making objects (NMO) are near an audible range of the noise cancellation device and receiving a signal from the one or more NMOs indicative of a kind of noise the one or more NMOs is generating. The method also includes selecting a specific noise cancellation model to reduce an expected noise in response to the received kind of noise the one or more NMOs is generating.

    摘要翻译: 一种用于改善噪声消除装置的性能的方法,所述方法包括确定一个或多个噪声产生对象(NMO)是否在噪声消除装置的可听范围附近并且接收来自指示某种类型的一个或多个NMO的信号 一个或多个NMO正在产生噪音。 该方法还包括选择特定的噪声消除模型以响应于所接收的一个或多个NMO产生的噪声种类来减少期望的噪声。

    HYBRID PRE-TRAINING OF DEEP BELIEF NETWORKS
    2.
    发明申请
    HYBRID PRE-TRAINING OF DEEP BELIEF NETWORKS 有权
    深层比较网络的混合预训练

    公开(公告)号:US20140164299A1

    公开(公告)日:2014-06-12

    申请号:US13707088

    申请日:2012-12-06

    IPC分类号: G06N3/08

    CPC分类号: G06N3/08

    摘要: Pretraining for a DBN initializes weights of the DBN (Deep Belief Network) using a hybrid pre-training methodology. Hybrid pre-training employs generative component that allows the hybrid PT method to have better performance in WER (Word Error Rate) compared to the discriminative PT method. Hybrid pre-training learns weights which are more closely linked to the final objective function, allowing for a much larger batch size compared to generative PT, which allows for improvements in speed; and a larger batch size allows for parallelization of the gradient computation, speeding up training further.

    摘要翻译: 预先训练DBN使用混合预训练方法初始化DBN(深信仰网络)的权重。 混合预训练采用生成部件,与辨别性PT方法相比,允许混合PT方法在WER(字错误率)方面具有更好的性能。 混合预训练学习与最终目标函数更紧密相关的权重,允许与生成PT相比更大的批量大小,这允许提高速度; 并且较大的批量允许梯度计算的并行化,进一步加速训练。

    Language translation in an environment associated with a virtual application
    3.
    发明授权
    Language translation in an environment associated with a virtual application 有权
    与虚拟应用程序相关联的环境中的语言翻译

    公开(公告)号:US08655644B2

    公开(公告)日:2014-02-18

    申请号:US12570665

    申请日:2009-09-30

    IPC分类号: G06F17/28

    CPC分类号: G06F17/289 G06Q20/102

    摘要: Methods and apparatus for language translation in a computing environment associated with a virtual application are presented. For example, a method for providing language translation includes determining languages of a user and a correspondent; determining one or more sequences of translators; determining a selected sequence of selected translators from the one or more sequences of the translators; requesting a change in virtual locations, within the computing environment associated with the virtual application, of one or more selected translator virtual representations of the selected translators to a virtual meeting location within the computing environment associated with the virtual application; and changing virtual locations of the one or more selected translator virtual representations to the virtual meeting location. One or more of determining languages, determining one or more sequences, determining a selected sequence, requesting a change in virtual locations, and changing virtual locations occur on a processor device.

    摘要翻译: 提出了与虚拟应用程序相关联的计算环境中的语言翻译的方法和装置。 例如,提供语言翻译的方法包括确定用户和记者的语言; 确定翻译器的一个或多个序列; 从所述翻译器的所述一个或多个序列确定所选择的翻译器的选定序列; 在与所述虚拟应用相关联的所述计算环境内,将所选择的转换器的一个或多个所选择的转换器虚拟表示的虚拟位置改变为与所述虚拟应用相关联的所述计算环境内的虚拟会议位置; 以及将所述一个或多个所选择的翻译器虚拟表示的虚拟位置改变到所述虚拟会议位置。 确定一个或多个序列,确定所选择的序列,请求虚拟位置的改变以及改变虚拟位置中的一个或多个发生在处理器设备上。

    Phonetic features for speech recognition
    4.
    发明授权
    Phonetic features for speech recognition 有权
    用于语音识别的语音特征

    公开(公告)号:US08484024B2

    公开(公告)日:2013-07-09

    申请号:US13034293

    申请日:2011-02-24

    IPC分类号: G10L15/06

    摘要: Techniques are disclosed for using phonetic features for speech recognition. For example, a method comprises the steps of obtaining a first dictionary and a training data set associated with a speech recognition system, computing one or more support parameters from the training data set, transforming the first dictionary into a second dictionary, wherein the second dictionary is a function of one or more phonetic labels of the first dictionary, and using the one or more support parameters to select one or more samples from the second dictionary to create a set of one or more exemplar-based class identification features for a pattern recognition task.

    摘要翻译: 公开了使用语音特征进行语音识别的技术。 例如,一种方法包括以下步骤:获得与语音识别系统相关联的第一字典和训练数据集,从训练数据集计算一个或多个支持参数,将第一字典变换为第二字典,其中第二字典 是第一字典的一个或多个语音标签的功能,并且使用一个或多个支持参数从第二字典中选择一个或多个样本,以创建用于模式识别的一个或多个基于样本的类识别特征的集合 任务。

    MT Based Spoken Dialog Systems Customer/Machine Dialog
    5.
    发明申请
    MT Based Spoken Dialog Systems Customer/Machine Dialog 有权
    基于MT的口语对话系统客户/机器对话框

    公开(公告)号:US20130073276A1

    公开(公告)日:2013-03-21

    申请号:US13236016

    申请日:2011-09-19

    IPC分类号: G06F17/28

    摘要: Operation of an automated dialog system is described using a source language to conduct a real time human machine dialog process with a human user using a target language. A user query in the target language is received and automatically machine translated into the source language. An automated reply of the dialog process is then delivered to the user in the target language. If the dialog process reaches an initial assistance state, a first human agent using the source language is provided to interact in real time with the user in the target language by machine translation to continue the dialog process. Then if the dialog process reaches a further assistance state, a second human agent using the target language is provided to interact in real time with the user in the target language to continue the dialog process.

    摘要翻译: 使用源语言来描述自动对话系统的操作,以使用目标语言与人类用户进行实时的人机对话过程。 接收目标语言的用户查询并自动机器翻译成源语言。 然后将对话过程的自动回复以目标语言传递给用户。 如果对话过程达到初始辅助状态,则使用源语言的第一人机代理被提供以通过机器翻译以目标语言与用户实时交互以继续对话过程。 然后,如果对话过程达到进一步的辅助状态,则使用目标语言的第二人机代理被提供以与目标语言的用户实时交互以继续对话过程。

    Recovering the structure of sparse markov networks from high-dimensional data
    6.
    发明授权
    Recovering the structure of sparse markov networks from high-dimensional data 有权
    从高维数据恢复稀疏马尔科夫网络的结构

    公开(公告)号:US08326787B2

    公开(公告)日:2012-12-04

    申请号:US12551297

    申请日:2009-08-31

    IPC分类号: G06F17/00 G06F7/60 G06F3/00

    CPC分类号: G06N99/005 G06N7/005

    摘要: A method, information processing system, and computer readable article of manufacture model data. A first dataset is received that includes a first set of physical world data. At least one data model associated with the first dataset is generated based on the receiving. A second dataset is received that includes a second set of physical world data. The second dataset is compared to the at least one data model. A probability that the second dataset is modeled by the at least one data model is determined. A determination is made that the probability is above a given threshold. A decision associated with the second dataset based on the at least one data model is generated in response to the probability being above the given threshold. The probability and the decision are stored in memory. The probability and the decision are provided to user via a user interface.

    摘要翻译: 一种方法,信息处理系统和计算机可读物品的制造模型数据。 接收包括第一组物理世界数据的第一数据集。 基于接收生成与第一数据集相关联的至少一个数据模型。 接收包括第二组物理世界数据的第二数据集。 将第二数据集与至少一个数据模型进行比较。 确定第二数据集由至少一个数据模型建模的概率。 确定概率高于给定阈值。 响应于高于给定阈值的概率,生成基于至少一个数据模型与第二数据集相关联的决定。 概率和决定存储在内存中。 通过用户界面向用户提供概率和决定。

    Phonetic Features for Speech Recognition
    7.
    发明申请
    Phonetic Features for Speech Recognition 有权
    语音识别的语音特征

    公开(公告)号:US20120221333A1

    公开(公告)日:2012-08-30

    申请号:US13034293

    申请日:2011-02-24

    IPC分类号: G10L15/06

    摘要: Techniques are disclosed for using phonetic features for speech recognition. For example, a method comprises the steps of obtaining a first dictionary and a training data set associated with a speech recognition system, computing one or more support parameters from the training data set, transforming the first dictionary into a second dictionary, wherein the second dictionary is a function of one or more phonetic labels of the first dictionary, and using the one or more support parameters to select one or more samples from the second dictionary to create a set of one or more exemplar-based class identification features for a pattern recognition task.

    摘要翻译: 公开了使用语音特征进行语音识别的技术。 例如,一种方法包括以下步骤:获得与语音识别系统相关联的第一字典和训练数据集,从训练数据集计算一个或多个支持参数,将第一字典变换为第二字典,其中第二字典 是第一字典的一个或多个语音标签的功能,并且使用一个或多个支持参数从第二字典中选择一个或多个样本,以创建用于模式识别的一个或多个基于样本的类识别特征的集合 任务。

    Simulation method and system
    8.
    发明授权
    Simulation method and system 失效
    仿真方法和系统

    公开(公告)号:US08237742B2

    公开(公告)日:2012-08-07

    申请号:US12137606

    申请日:2008-06-12

    IPC分类号: G09G5/00 G09G5/36

    摘要: A simulation method and system. A computing system receives a first audio and/or video data stream. The first audio and/or video data stream includes data associated with a first person. The computing system monitors the first audio and/or video data stream. The computing system identifies emotional attributes comprised by the first audio and/or video data stream. The computing system generates a second audio and/or video data stream associated with the first audio and/or video data stream. The second audio and/or video data stream includes the data without the emotional attributes. The computing system stores the second audio and/or video data stream.

    摘要翻译: 一种模拟方法和系统。 计算系统接收第一音频和/或视频数据流。 第一音频和/或视频数据流包括与第一人相关联的数据。 计算系统监视第一音频和/或视频数据流。 计算系统识别由第一音频和/或视频数据流组成的情感属性。 计算系统生成与第一音频和/或视频数据流相关联的第二音频和/或视频数据流。 第二音频和/或视频数据流包括没有情感属性的数据。 计算系统存储第二音频和/或视频数据流。

    DIRECTIONAL OPTIMIZATION VIA EBW
    9.
    发明申请
    DIRECTIONAL OPTIMIZATION VIA EBW 有权
    通过EBW进行方向优化

    公开(公告)号:US20110282925A1

    公开(公告)日:2011-11-17

    申请号:US12777768

    申请日:2010-05-11

    IPC分类号: G06F1/02 G06F17/11

    CPC分类号: G06F17/11

    摘要: An optimization system and method includes determining a best gradient as a sparse direction in a function having a plurality of parameters. The sparse direction includes a direction that maximizes change of the function. This maximum change of the function is determined by performing an optimization process that gives maximum growth subject to a sparsity regularized constraint. An extended Baum Welch (EBW) method can be used to identify the sparse direction. A best step size is determined along the sparse direction by finding magnitudes of entries of direction that maximizes the function restricted to the sparse direction. A solution is recursively refined for the function optimization using a processor and storage media.

    摘要翻译: 优化系统和方法包括在具有多个参数的函数中确定最佳梯度作为稀疏方向。 稀疏方向包括使功能变化最大化的方向。 通过执行优化处理来确定功能的最大变化,该优化过程允许受到稀疏正则化约束的最大增长。 扩展的Baum Welch(EBW)方法可用于识别稀疏方向。 通过找到使限于稀疏方向的功能最大化的方向条目的大小,沿着稀疏方向确定最佳步长。 使用处理器和存储介质递归地优化了功能优化的解决方案。

    USER AUTHENTICATION VIA EVOKED POTENTIAL IN ELECTROENCEPHALOGRAPHIC SIGNALS
    10.
    发明申请
    USER AUTHENTICATION VIA EVOKED POTENTIAL IN ELECTROENCEPHALOGRAPHIC SIGNALS 有权
    用户认证通过电磁信号中的潜在可能性

    公开(公告)号:US20090063866A1

    公开(公告)日:2009-03-05

    申请号:US11846893

    申请日:2007-08-29

    IPC分类号: G06F15/18 H04L9/32

    摘要: Techniques are disclosed for authentication and identification of a user by use of an electroencephalographic (EEG) signal. For example, a method for authenticating a user includes the following steps. At least one electroencephalographic response is obtained from a user in accordance with perceptory stimuli presented to the user. The user is authenticated based on the obtained electroencephalographic response. The authenticating step may be based on detection of an event-related potential in the obtained electroencephalographic response. The event-related potential may be a P300 event-related potential. The method may also include the step of enrolling the user prior to authenticating the user. The enrolling step may include a supervised enrollment procedure or an unsupervised enrollment procedure.

    摘要翻译: 公开了通过使用脑电图(EEG)信号来认证和识别用户的技术。 例如,用于验证用户的方法包括以下步骤。 根据呈现给用户的感知刺激,从用户获得至少一个脑电图响应。 基于获得的脑电图响应来认证用户。 认证步骤可以基于所获得的脑电图响应中事件相关电位的检测。 事件相关的潜力可能是P300事件相关的潜力。 该方法还可以包括在认证用户之前注册用户的步骤。 注册步骤可以包括监督注册过程或无监督注册过程。