摘要:
To improve coolant sealing or reduce the risks in the event of leakage for an electronic unit, e.g. an engine control unit, containing electric and/or electronic components which are disposed on an upper side of a thermally conductive electronic base plate and thermally coupled to the base plate, the base plate in turn being thermally coupled to a coolant passage, there is provided a particular configuration and arrangement of the components delimiting a coolant passage. Advantageously, the underside of the base plate can come into direct contact with a coolant (“direct cooling”). By making a ridge running in an annularly closed manner and being formed in one-piece with the base plate, coolant escaping from the coolant passage is prevented from passing directly to the underside of the base plate. Accordingly, the coolant passage may be sealed by a “double sealing arrangement” on the underside of the base plate.
摘要:
The invention relates to a method for producing a housing, wherein the base body of the housing (10) is initially separated from a hollow profile and a printed circuit board (1) is subsequently inserted into the base body of the housing (10). The base body of the housing (10) is then closed laterally with the aid of covering elements (6).
摘要:
In order to improve the heat dissipation capacity in an electronic circuit configuration with one or more printed circuit boards thermally coupled by one flat side to a heat sink having at least one coolant duct, the flat side immediately adjoins the coolant duct.
摘要:
In order to improve the heat dissipation capacity in an electronic circuit configuration with one or more printed circuit boards thermally coupled by one flat side to a heat sink having at least one coolant duct, the flat side immediately adjoins the coolant duct.
摘要:
To improve coolant sealing or reduce the risks in the event of leakage for an electronic unit, e.g. an engine control unit, containing electric and/or electronic components which are disposed on an upper side of a thermally conductive electronic base plate and thermally coupled to the base plate, the base plate in turn being thermally coupled to a coolant passage, there is provided a particular configuration and arrangement of the components delimiting a coolant passage. Advantageously, the underside of the base plate can come into direct contact with a coolant (“direct cooling”). By making a ridge running in an annularly closed manner and being formed in one-piece with the base plate, coolant escaping from the coolant passage is prevented from passing directly to the underside of the base plate. Accordingly, the coolant passage may be sealed by a “double sealing arrangement” on the underside of the base plate.