Abstract:
Gaskets for sealing two mating surfaces are described. The gaskets have an outer portion including a core between two sealing layers and an inner portion made of a deformable material and located in an aperature in the outer portion. The thickness of the inner portion is greater than the thickness of the outer portion. The inner portion may include a chemical treatment agent that can provide chemical protection to the mating surfaces. Methods of producing the gaskets and methods of using the gaskets for sealing joints, including corroded joints, are also described.
Abstract:
Certain embodiments of the invention provide plates for treating periarticular fractures or other non-full body weight bearing applications that combine polyaxial fixation with a low profile and enhanced contouring that more closely conforms to bone. Such plates can be designed to achieve buttressing effect and/or to be used in a reinforcement mode. Other features can be combined with these. Such plates can be created for use on bone sites such as on a tibia, fibula, metatarsal, calcaneous, other foot bone, humerus, radius, ulna, spinal, maxillofacial, as well as sites on other bones.
Abstract:
A ballistic-resistant panel in which the entire panel or a strike-face portion thereof is formed of a plurality of sheets of high modulus high molecular weight polyethylene tape. The sheets of high modulus polyethylene tape can be in the form of cross-plied laminated layers of tape strips or a woven fabric of tape strips. The strips of UHMWPE tape include a width of at least one inch and a modulus of greater than 1400 grams per denier. The ballistic-resistant panel may include a backing layer of conventional high modulus fibers embedded in resin. A wide variety of adhesives were found acceptable for bonding the cross-plied layers of high modulus polyethylene tape together for forming the ballistic-resistant panels of the present invention.
Abstract:
An outer portion of one or more layers of microwave interactive material, which is for becoming hot when exposed to microwave energy, is arranged in a manner that seeks to advantageously control heating, so that the outer portion of the microwave interactive material can safely be adjacent the periphery of a turntable tray. The turntable tray can be heated by the microwave interactive material so that a peak thermally induced stress occurs in the turntable tray at a position proximate the periphery of the tray. The layer(s) of microwave interactive material are configured in a manner so that the peak thermally induced stress is less than a predetermined amount.
Abstract:
A ballistic-resistant panel in which the entire panel or a strike-face portion thereof is formed of a plurality of sheets of high modulus high molecular weight polyethylene tape. The sheets of high modulus polyethylene tape can be in the form of cross-plied laminated layers of tape strips or a woven fabric of tape strips. The strips of UHMWPE tape include a width of at least one inch and a modulus of greater than 1400 grams per denier. The ballistic-resistant panel may include a backing layer of conventional high modulus fibers embedded in resin. A wide variety of adhesives were found acceptable for bonding the cross-plied layers of high modulus polyethylene tape together for forming the ballistic-resistant panels of the present invention.
Abstract:
According to some embodiments, a light emitting diode (LED) power management and diagnostics history recording integrated circuit includes a power management circuit controlling a supply of power to the LED, a diagnostics detection circuit recording a diagnostics history for the LED, a non-volatile diagnostics history memory storing the diagnostics history; and an external interface for transferring externally the diagnostics history stored in the non-volatile diagnostics history memory. The diagnostics history includes diagnostics data for at least two sequential occurrences of a reoccurring fault condition. The diagnostics data may include temperature, under-voltage, over-voltage, open-circuit load, and short-circuit load indicators, among others. A diagnostics analysis system downloads the diagnostics data after a given operation period and performs maintenance decisions according to the diagnostics data. Such systems are particularly useful for diagnosing intermittent faults and/or faults in remotely-located systems, and making maintenance decisions accordingly.
Abstract:
An outer portion of one or more layers of microwave interactive material, which is for becoming hot when exposed to microwave energy, is arranged in a manner that seeks to advantageously control heating, so that the outer portion of the microwave interactive material can safely be adjacent the periphery of a turntable tray. The turntable tray can be heated by the microwave interactive material so that a peak thermally induced stress occurs in the turntable tray at a position proximate the periphery of the tray. The layer(s) of microwave interactive material are configured in a manner so that the peak thermally induced stress is less than a predetermined amount.
Abstract:
PROBLEM TO BE SOLVED: To provide a perforating pin and equipment for perforation with which an accurate piercing region and piercing direction of a guiding pin can be easily specified at the neck of the femur or its surroundings and an advancing situation of the perforating pin can be confirmed when the perforating pin is pierced.SOLUTION: The guide 1 for the perforating pin includes a main body section 2 which is equipped with a contacting section 8, a guiding channel 3 for the perforating pin and an operation section 9, a first advancing direction of the perforating pin displaying section 5 with which the advancing direction of the perforating pin 10 inserted in the guiding channel 3 can be confirmed by X-ray fluoroscopy, and a second advancing direction of the perforating pin displaying section 6 with which the advancing direction of the perforating pin 10 inserted in the guiding channel 3 can be confirmed by X-ray fluoroscopy from the different direction than the first advancing direction of the perforating pin displaying section 5. The bone perforating pin 10 can be confirmed by X-ray fluoroscopy with the first and the second advancing direction of the perforating pin displaying sections 5 and 6 while the perforating pin 10 inserted in the guiding channel 3 is superimposed on the displaying sections 5 and 6.