摘要:
An optical system and method of exciting and measuring fluorescence on or in samples treated using fluorescent pigments using such an optical system having at least one first laser (1); a mirror (4); a deflection element (7); an optic (8); and a unit (10), which includes mirror (4) and optic (8) mounted fixed in relation to one another. The unit (10) is positioned so it is linearly movable back and forth along the optical axis (5) and is mechanically connected to an oscillating linear drive (11). The optic (8) additionally acts as a collimator and the mirror (4) additionally acts to deflect the collimated light (12) parallel to the optical axis (5).
摘要:
Method has laser scanner for pixel-precise imaging of fluorescent samples having fluorescent dyes. The scanner has sample table, laser and first optical system providing laser beam for exciting the samples, scanner head with deflecting element for scanning sample, first lens, second optical system for forwarding emission beams triggered by the laser beam and deflected by first lens and deflecting element to a detector, position encoder emitting position signals indicating location of the scanner head, electronic element for filtering the detector signals with a time constant and an A/D converter for digitizing the filtered detector signals. The filtered detector signals and the position encoder signals are acquired independently, in parallel and continuously by a computer and are related to a common time base, the A/D conversion being carried out often so that each pixel of an image is always assigned more than one data point.
摘要:
A laser scanner apparatus images and/or measures a fluorescent sample on a moveable table. At least one laser and an optical system provide two laser beams at differing wavelengths parallel to the fluorescent sample. A moveable wedge-shaped dichroic mirror deflects the laser beams through an objective toward the sample causing spatial separation of the focal points and two non-parallel emission beams. The emission beams are guided through an optical system to two detectors.
摘要:
An optical system for exciting and measuring fluorescence of samples has a first laser; a deflection element; a mirror; and an optic fixed in relation to one another. A unit is linearly movable back and forth along the optical axis and is mechanically connected to an oscillating linear drive. The optic acts as a collimator and the mirror acts to deflect the collimated light diametrically opposite to the bundled light of the laser. A table for receiving sample holders for samples; an optical arrangement for imaging a second focal point; an aperture plate in the second focal point; a first spectral filter; and a first detector are parts of the optical system and a focusing beam of the light emitted by the laser and is deflected by the deflection element toward the mirror.
摘要:
A laser scanner device (1) for imaging and/or measuring fluorescent samples located on slides and treated using fluorescent pigments includes a sample table (2) defining a sample plane (49) and a motorized transport device (3) for moving a slide from a storage unit (4) to the sample table (2) and back. The storage unit (4) includes one sample part (7) for sample slides (8) and one test part (9) for test slides (10), each having at least one depository (6) and being accessible during the operation of the laser scanner device (1) for the transport device (3). The test part (9) is implemented separately from the sample part (7) and as a test part magazine (9′) that is permanently connected to the laser scanner device (1) for one or more test slides (10).
摘要:
The invention relates to a data acquisition method using a laser scanner for the pixel-precise imaging of fluorescent samples which are on object carriers and have been treated with fluorescent dyes. Such a laser scanner comprises a sample table; at least one laser and a first optical system for providing at least one laser beam for exciting the fluorescent samples; a scanner head (50) having an optical deflecting element for scanning this sample in at least one direction of movement (75); a first lens; a second optical system for forwarding emission beams, which are triggered by the laser beams on the sample and are deflected by the first lens and the deflecting element, to at least one detector; a position encoder (91) which emits position encoder signals (92) which indicate the instantaneous location of the scanner head (50) in relation to a zero point; an electronic element for filtering the detector signals (93) with a defined time constant; and an A/D converter for digitizing the filtered detector signals (93). The data acquisition method according to the invention is characterized in that the filtered detector signals (93) from the A/D converter and the position encoder signals (92) are acquired independently, in a parallel manner and continuously by a computer unit or a controller (40) and are related to a common time base (94), wherein the A/D conversion is carried out so often that each pixel (95) of an image is always assigned more than one data point of the A/D converter.
摘要:
A holding device for at least one object carrier, the object carrier being suitable to receive one or more organic and/or inorganic samples and comprising materials such as glass, plastic, silicon, pyrolytic graphite, and/or metal, this holding device being configured to be gripped by grippers of a robot. The holding device comprising two essentially parallel lengthwise walls and two essentially parallel transverse walls which extend substantially at right angles from the lengthwise walls. Holding devices according to preferred embodiments are constructed in a frame shape, wherein the lengthwise and transverse walls define a frame surrounding at least one opening which completely transverses the device. Holding devices according to further embodiments are constructed a plate shape, in that the region between the lengthwise walls and transverse walls is implemented as a carrying surface. All embodiments comprising gripping surfaces on the external surface profile of the lengthwise and transverse walls.