Abstract:
A process for producing a lightweight molded part, comprising introducing a gas into a particle-containing, molten metal to produce a metal foam having voids with a monomodal distribution of their dimensions, introducing the metal foam into a casting die and compressing it therein essentially under all-round pressure; and the molded part made by this process.
Abstract:
A lightweight part and process and device of making the same, the lightweight part including an inner core including a metal foam. A dense core surface layer is metallically joined to the inner core. An outer wall includes an essentially pore-free cast metal layer that is at least one of positively engaged with the dense core surface layer and surrounding the inner core, and metallically joined to the dense core surface layer and surrounding the inner core. The process includes creating a core part by forming the dense core surface layer, forming the inner core of a metal foam, and metallically joining together the inner core and the dense core surface layer. The process further includes creating a finished part by positioning the core part in a casting mold, feeding a melt material into the casting mold, and allowing the melt material to solidify so as to form the outer wall. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
Abstract:
Process of making a lightweight part comprising an inner core including a metal foam, a dense core surface layer that is metallically joined to the inner core, and an outer wall comprising an essentially pore-free cast metal layer that is at least one of positively engaged with the dense core surface layer and surrounding the inner core and metallically joined to the dense core surface layer and surrounding the inner core, wherein the process includes creating a core part by forming the dense core surface layer, forming the inner core of a metal foam, and metallically joining together the inner core and the dense core surface layer and creating a finished part by positioning the core part in a casting mold, feeding a melt material into the casting mold, and allowing the melt material to solidify so as to form the outer wall. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
Abstract:
A lightweight part and process and device of making the same, the lightweight part including an inner core including a metal foam. A dense core surface layer is metallically joined to the inner core. An outer wall includes an essentially pore-free cast metal layer that is at least one of positively engaged with the dense core surface layer and surrounding the inner core, and metallically joined to the dense core surface layer and surrounding the inner core. The process includes creating a core part by forming the dense core surface layer, forming the inner core of a metal foam, and metallically joining together the inner core and the dense core surface layer. The process further includes creating a finished part by positioning the core part in a casting mold, feeding a melt material into the casting mold, and allowing the melt material to solidify so as to form the outer wall. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
Abstract:
The invention relates to a method for producing a small thin-walled tube for a medical application or for a medical product, in particular for a stent, wherein a blank of an in particular bioresorbable magnesium alloy is deformed to produce a small tube, after which the small tube is used for medical purposes or from which the medical product, such as a stent, can be made. In order to be able to produce the small tube in one step and with high precision, it is provided according to the invention that a male die (2) with a base body (3) and a mandrel (4) tapered relative to the base body (3) and the blank is provided with a blind hole or an opening, wherein a diameter of the blind hole or the opening of the blank is equal to or greater than an outer diameter of the mandrel (4), after which the blank with inserted mandrel (4) with the male die (2) is pressed forwards at least in part through a female die (5) with a receiving region (6) and a contouring region (7), wherein the contouring region (7) has a free diameter, which is larger than the outer diameter of the mandrel (4), but smaller than an outer diameter of the blank, in order to form the small tube.
Abstract:
A lightweight part and process and device of making the same, the lightweight part including an inner core including a metal foam. A dense core surface layer is metallically joined to the inner core. An outer wall includes an essentially pore-free cast metal layer that is at least one of positively engaged with the dense core surface layer and surrounding the inner core, and metallically joined to the dense core surface layer and surrounding the inner core. The process includes creating a core part by forming the dense core surface layer, forming the inner core of a metal foam, and metallically joining together the inner core and the dense core surface layer. The process further includes creating a finished part by positioning the core part in a casting mold, feeding a melt material into the casting mold, and allowing the melt material to solidify so as to form the outer wall. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
Abstract:
The invention relates to a method for producing a small thin-walled tube for a medical application or for a medical product, in particular for a stent, wherein a blank of an in particular bioresorbable magnesium alloy is deformed to produce a small tube, after which the small tube is used for medical purposes or from which the medical product, such as a stent, can be made. In order to be able to produce the small tube in one step and with high precision, it is provided according to the invention that a male die (2) with a base body (3) and a mandrel (4) tapered relative to the base body (3) and the blank is provided with a blind hole or an opening, wherein a diameter of the blind hole or the opening of the blank is equal to or greater than an outer diameter of the mandrel (4), after which the blank with inserted mandrel (4) with the male die (2) is pressed forwards at least in part through a female die (5) with a receiving region (6) and a contouring region (7), wherein the contouring region (7) has a free diameter, which is larger than the outer diameter of the mandrel (4), but smaller than an outer diameter of the blank, in order to form the small tube.
Abstract:
A process for producing a lightweight molded part, comprising introducing a gas into a particle-containing, molten metal to produce a metal foam having voids with a monomodal distribution of their dimensions, introducing the metal foam into a casting die and compressing it therein essentially under all-round pressure; and the molded part made by this process.
Abstract:
A device for feeding gas in a melt of foamable metal by means of at least one pipe for producing metal foam. The gas insertion pipe projects inwardly into the melt and at the projecting end has a gas outlet having a cross section of 0.006 to 0.2 mm2 and a pipe face area of less than 4.0 mm2. A flowable metal foam has gas bubbles defined by walls of a liquid metal matrix with solid reinforcing particles, and the diameter of the largest gas bubbles divided by that of the smallest gas bubbles is less than 2.5.
Abstract:
Process of making a lightweight part comprising an inner core including a metal foam, a dense core surface layer that is metallically joined to the inner core, and an outer wall comprising an essentially pore-free cast metal layer that is at least one of positively engaged with the dense core surface layer and surrounding the inner core and metallically joined to the dense core surface layer and surrounding the inner core, wherein the process includes creating a core part by forming the dense core surface layer, forming the inner core of a metal foam, and metallically joining together the inner core and the dense core surface layer and creating a finished part by positioning the core part in a casting mold, feeding a melt material into the casting mold, and allowing the melt material to solidify so as to form the outer wall. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.