Abstract:
A system avoids false sampling due to reflections from previous commands or other noise on a data strobe line. The system uses a normalizer circuit or leaker circuit, and the data strobe line is not optimally terminated or is unterminated. The data strobe line is to receive a burst of data sample pulses or edges and sample a data line based on the edges. The receiving device includes logic that generates a count triggered from an initial edge on the data strobe line, and identifies, based on the count, an initial valid edge of the burst. Any false strobes due to noise or reflections that are received prior to the actual burst can be rejected.
Abstract:
Data pin mapping and delay training techniques. Valid values are detected on a command/address (CA) bus at a memory device. A first part of the pattern (high phase) is transmitted via a first subset of data pins on the memory device in response to detecting values on the CA bus; a second part of the pattern (low phase) is transmitted via a second subset of data pins on the memory device in response to detecting values on the CA bus. Signals are sampled at the memory controller from the data pins while the CA pattern is being transmitted to obtain a first memory device's sample (high phase) and the second memory device's sample (low phase) by analyzing the first and the second subset of sampled data pins. The analysis combined with the knowledge of the transmitted pattern on the CA bus leads to finding the unknown data pins mapping. Varying the transmitted CA patterns and the resulting feedbacks sampled on memory controller data signals allows CA/CTRL/CLK signals delay training with and without priory data pins mapping knowledge.