Abstract:
A buffer having an output slew rate which is relatively insensitive to loading and supply voltage. The output buffer includes an output node, a first half-circuit and a second half-circuit. The first half-circuit is for slewing the output node from a first voltage to a second voltage. The first half-circuit includes a first output transistor connected between the output node and a second voltage reference node, a first switching device connected from a gate of the first output transistor to the second voltage reference node, a second switching device connected from the gate of the output transistor to a first node, a first current source connected from a first voltage reference node to the first node, and a first capacitor connected from the output node to the first node. The second half-circuit is for slewing the output node from the second voltage to the first voltage. The second half-circuit includes a second output transistor connected between the output node and the first voltage reference node, a third switching device connected from the gate of the second output transistor to the first voltage reference node, a fourth switching device connected from the gate of the second output transistor to a second node, a second current source connected from the second voltage reference node to the second node, and a second capacitor connected from the output node to the second node.
Abstract:
An adaptive cable equalizer is provided with a simple architecture, wherein a single control structure: controls the adaptation of the filter for compensating for cable length while simultaneously compensating for process and temperature variations; optimizes the SNR at any cable length by controlling biasing current sources; and uses a two-stage architecture which eliminates start-up problems and optimizes output levels to obtain optimal dc restoration while simultaneously allowing for independent optimization of the output levels of the recovered data in accordance with other requirements as desired. An analog adaptive equalizing filter is used for accurately synthesizing the inverse transfer function of cables of variable lengths. Data rates up to and beyond 400 Mbps are supported and the adaptive behavior automatically compensates for different cable lengths as well as process variations (with respect to the process(es) used for fabricating the equalizer in a monolithic form) and temperature variations.
Abstract:
An angle transducer includes input rotor and reference rotor assemblies that are mounted for rotation upon a common shaft and that cooperate with respective moveable input stator and fixed reference stator assemblies to produce signals whose phase difference represents an input angle. Diametrically opposed sensors in each stator assembly achieve enhanced eccentricity error reduction by producing separate signals whose phases are averaged after the phase of each is individually measured. A phase measurement technique does not rely upon the mechanical accuracy of the angular placement of the poles for the rotor assemblies. A phase measurement between two signals is performed by beginning on an arbitrary zero crossing of the signal from the reference stator and forming, for each rotor, the sum of the times for the zero crossings for one complete revolution. To avoid the effects of crosstalk the rotors may have different numbers of poles. The sums, the different numbers of poles, the time for one revolution, and, for each rotor, the number of poles from the pole corresponding to the first term in the associated sum to an absolute reference pole, are the variables in a phase formula producing a high accuracy and resolution unified answer free of separate coarse and fine components. The absolute reference poles may be missing poles whose absence is detected and replaced with an estimate. State and time of transition data for one revolution's worth of all of the signals from the stators are temporarily captured in a small high speed revolving buffer and then immediately stored in a larger wrap-around memory under the control of an interrupt system of a microprocessor. To perform an angle measurement the microprocessor analyzes the last complete revolution's worth of data, beginning at any point in the revolution.
Abstract:
A method of averaging a plurality of measured modulo values respectively produced by a corresponding plurality of measuring devices and each corresponding to the same input parameter applied thereto, the method comprising the steps of:applying a convenient same value of the input parameter to each of the measuring devices;selecting one of the plurality of measuring devices as a reference;measuring the offset between the measured modulo values of the measuring device selected as a reference and each of the remaining measuring devices;applying an arbitrary same value of the input parameter to each of the measuring devices;measuring the respective modulo values from the plurality of measuring devices;diminishing each of the measured modulo values from a non-reference measuring device by the offset associated with that measuring device; andaveraging the measured modulo value from the reference measuring device and the diminished measured modulo values.
Abstract:
An improved current mirror is described which has utility as either a stand alone current source or as a gain block whenever current gain or transimpedance gain is required. When used as a current source the current mirror exhibits higher output impedance, and when used as a gain block, the current mirror exhibits improved higher frequency performance and high transimpedance gain than prior art current mirrors.
Abstract:
A plate-like structure features a pair of relatively opposing, equilateral, predominantly smooth faces, each of which is bordered completely by its own set of rigid working edges. A hand guard is also provided to removably receive any of the side surfaces extending between the opposing faces and the working edges adjacent to the selected side surface.
Abstract:
An angle transducer includes input rotor and reference rotor assemblies that are mounted for rotation upon a common shaft and that cooperate with respective moveable input stator and fixed reference stator assemblies to produce signals whose phase difference represents an input angle. Diametrically opposed sensors in each stator assembly achieve enhanced eccentricity error reduction by producing separate signals whose phases are averaged after the phase of each is individually measured. A phase measurement technique does not rely upon the mechanical accuracy of the angular placement of the poles for the rotor assemblies. A phase measurement between two signals is performed by beginning on an arbitrary zero crossing of the signal from the reference stator and forming, for each rotor, the sum of the times for the zero crossings for one complete revolution.
Abstract:
An angle transducer includes input rotor and reference rotor assemblies that are mounted for rotation upon a common shaft and that cooperate with respective moveable input stator and fixed reference stator assemblies to produce signals whose phase difference represents an input angle. Diametrically opposed sensors in each stator assembly achieve enhanced eccentricity error reduction by producing separate signals whose phases are averaged after the phase of each is individually measured. A phase measurement technique does not rely upon the mechanical accuracy of the angular placement of the poles for the rotor assemblies. A phase measurement between two signals is performed by beginning on an arbitrary zero crossing of the signal from the reference stator and forming, for each rotor, the sum of the times for the zero crossings for one complete revolution. To avoid the effects of crosstalk the rotors may have different numbers of poles. The sums, the different numbers of poles, the time for one revolution, and, for each rotor, the number of poles from the pole corresponding to the first term in the associated sum to an absolute reference pole, are the variables in a phase formula producing a high accuracy and resolution unified answer free of separate coarse and fine components. The absolute reference poles may be missing poles whose absence is detected and replaced with an estimate. State and time of transition data for one revolution's worth of all of the signals from the stators are temporarily captured in a small high speed revolving buffer and then immediately stored in a larger wrap-around memory under the control of an interrupt system of a microprocessor. To perform an angle measurement the microprocessor analyzes the last complete revolution's worth of data, beginning at any point in the revolution.
Abstract:
An angle transducer includes input rotor and reference rotor assemblies that are mounted for rotation upon a common shaft and that cooperate with respective moveable input stator and fixed reference stator assemblies to produce signals whose phase difference represents an input angle. Diametrically opposed sensors in each stator assembly achieve enhanced eccentricity error reduction by producing separate signals whose phases are averaged after the phase of each is individually measured. A phase measurement technique does not rely upon the mechanical accuracy of the angular placement of the poles for the rotor assemblies. A phase measurement between two signals is performed by beginning on an arbitrary zero crossing of the signal from the reference stator and forming, for each rotor, the sum of the times for the zero crossings for one complete revolution. To avoid the effects of crosstalk the rotors may have different numbers of poles. The sums, the different numbers of poles, the time for one revolution, and, for each rotor, the number of poles from the pole corresponding to the first term in the associated sum to an absolute reference pole, are the variables in a phase formula producing a high accuracy and resolution unified answer free of separate coarse and fine components.