Abstract:
A system for optical comb carrier envelope offset frequency control includes a mode-locked oscillator. The mode-locked oscillator produces an output beam using an input beam and one or more control signals. The output beam includes a controlled carrier envelope offset frequency. A beat note generator produces a beat note signal using a portion of the output beam. A control signal generator produces the one or more control signals to set the beat note signal by modulating the intensity of the input beam within the mode locked oscillator. Modulating the intensity comprises using a Mach-Zehnder intensity modulator or using an intensity modulated external laser to affect a gain medium within the mode-locked laser.
Abstract:
An atomic magnetometer includes a vapor cell, one or more pumping lasers, a probe laser, and a sensor. The one or more pumping lasers are disposed to direct one or more laser beams though the vapor cell to interact with atoms of an atomic vapor in the vapor cell. The atomic vapor periodically absorbs light of alternating circular polarization from the one or more laser beams. The probe laser is disposed to direct polarized light to pass through the vapor cell. The sensor is disposed to intersect the polarized light from the probe laser after passing through the vapor cell.
Abstract:
An atomic oscillator device includes an atomic oscillator, a controlled oscillator, a resonance controller, and a cold-atom clock output. The atomic oscillator comprises a two-dimensional optical cooling region (2D OCR) for providing a source of atoms and a three-dimensional optical cooling region (3D OCR) for cooling and/or trapping the atoms emitted by the 2D OCR. The atomic oscillator comprises a microwave cavity surrounding the 3D OCR for exciting an atomic resonance. The controlled oscillator produces an output frequency. The resonance controller is for steering the output frequency of the controlled oscillator based on the output frequency and the atomic resonance as measured using an atomic resonance measurement. The cold-atom clock output is configured as being the output frequency of the controlled oscillator.
Abstract:
A system for optical comb carrier envelope offset frequency control includes a mode-locked laser and a frequency shifter. The mode-locked laser produces a laser output. The frequency shifter shifts the laser output to produce a frequency shifted laser output based at least in part on one or more control signals. The frequency shifted laser output has a controlled carrier envelope offset frequency. The frequency shifter includes a first polarization converter, a rotating half-wave plate, and a second polarization converter.
Abstract:
An inertial navigation system (INS) device includes three or more atomic interferometer inertial sensors, three or more atomic interferometer gravity gradiometers, and a processor. Three or more atomic interferometer inertial sensors obtain raw inertial measurements for three or more components of linear acceleration and three or more components of rotation. Three or more atomic interferometer gravity gradiometers obtain raw measurements for three or more components of the gravity gradient tensor. The processor is configured to determine position using the raw inertial measurements and the raw gravity gradient measurements.
Abstract:
An atom interferometer device for inertial sensing includes one or more thermal atomic sources, a state preparation laser, a set of lasers, and a detection laser. The one or more thermal atomic sources provide one or more atomic beams. A state preparation laser is disposed to provide a state preparation laser beam nominally perpendicular to each of the one or more atomic beams. A set of lasers is disposed to provide interrogation laser beams that interrogate the one or more atomic beams to assist in generating atom interference. A detection laser is disposed to provide a detection laser beam, which is angled at a first angle to the each of the one or more atomic beams in order to enhance the dynamic range of the device by enabling velocity selectivity of atoms used in detecting the atom interference.
Abstract:
A system for gravity measurement includes one or more atom sources, two or more laser beams, and a polarizing beamsplitter and a retro-reflection prism assembly. The one or more atom sources is to provide three ensembles of atoms. The two or more laser beams is to cool or interrogate the three ensembles of atoms. The polarizing beamsplitter and the retro-reflection prism assembly are in a racetrack configuration. The racetrack configuration routes the two or more laser beams in opposing directions around a loop topology, intersecting the three ensembles of atoms with appropriate polarizations chosen for cooling or interferometer interrogation. The three ensembles of atoms are positioned coaxially when interrogated.
Abstract:
A system for optical comb carrier envelope offset frequency control includes a mode-locked oscillator. The mode-locked oscillator produces an output beam using an input beam and one or more control signals. The output beam includes a controlled carrier envelope offset frequency. A beat note generator produces a beat note signal using a portion of the output beam. A control signal generator produces the one or more control signals to set the beat note signal by modulating the intensity of the input beam within the mode locked oscillator. Modulating the intensity comprises using a Mach-Zehnder intensity modulator or using an intensity modulated external laser to affect a gain medium within the mode-locked laser.
Abstract:
A system for gravity measurement includes one or more atom sources, two or more laser beams, and a polarizing beamsplitter and a retro-reflection prism assembly. The one or more atom sources is to provide three ensembles of atoms. The two or more laser beams is to cool or interrogate the three ensembles of atoms. The polarizing beamsplitter and the retro-reflection prism assembly are in a racetrack configuration. The racetrack configuration routes the two or more laser beams in opposing directions around a loop topology, intersecting the three ensembles of atoms with appropriate polarizations chosen for cooling or interferometer interrogation. The three ensembles of atoms are positioned coaxially when interrogated.
Abstract:
The system includes an optical resonator, a mount, and a fastener. The optical resonator is comprised of a material with a horizontal plane symmetry. The optical resonator includes a horizontal plane protrusion for mounting. The horizontal plane protrusion includes discrete resonator rotational orientation positions. The mount comprises mounting legs compatible with the horizontal plane symmetry. The mount includes discrete mount rotational orientation positions that correspond to the discrete resonator rotation orientation positions at a plurality of rotational angles. The fastener secures the horizontal plane protrusion of the optical resonator to the mount.