Abstract:
Compositions comprising at least one type of carbon nanotube, at least one surfactant, and at least one polymer are disclosed. The compositions provide stable fluorescence over a wide range of pH in various embodiments. In some embodiments, the compositions are biocompatible. Methods for preparing the compositions from at least one pre-formed polymer are disclosed. Methods for preparing the compositions from at least one monomer are disclosed. Heating methods utilizing the compositions are disclosed.
Abstract:
Articles comprising neat, aligned carbon nanotubes and methods for production thereof are disclosed. The articles and methods comprise extrusion of a super acid solution of carbon nanotubes followed by removal of the super acid solvent. The articles may be processed by wet-jet wet spinning, dry-jet wet spinning, and coagulant co-flow extrusion techniques.
Abstract:
The present invention is directed to at least one method and at least one apparatus for determining the length of single-wall carbon nanotubes (SWNTs). The method generally comprises the steps of: dispersing a sample of SWNTs into a suitable dispersing medium to form a solvent-suspension of solvent-suspended SWNTs; determining the mean SWNT diameter of the solvent-suspended SWNTs; introducing the solvent-suspended SWNTs into a viscosity-measuring device; obtaining a specific viscosity for the SWNT solvent-suspension; and determining the length of the SWNTs based upon the specific viscosity by solving, for example, the Kirkwood-Auer equation corrected by Batchelor's formula for the drag on a slender cylinder for “L,” to determine the length of the SWNTs. The apparatus generally comprises: a SWNT sample introduction mechanism; a dispersal chamber; a SWNT radius-determination chamber; and a viscosity determining chamber, wherein the SWNT sample introduction mechanism, the dispersal chamber, the SWNT radius-determination chamber, and the viscosity determination chamber are each operatively connected to at least one of the others.