Synchronization of distributed nodes

    公开(公告)号:US09794903B2

    公开(公告)日:2017-10-17

    申请号:US14476738

    申请日:2014-09-04

    申请人: Ziva Corporation

    摘要: Dynamic, untethered array nodes are frequency, phase, and time aligned/synchronized, and used to focus their transmissions of the same data coherently on a target or in the target's direction, using time reversal or directional beamforming. Information for alignment/synchronization may be sent from a master node of the array to other nodes, over non-RF links, such as optical and acoustic links. Some nodes may be connected directly to the master nodes, while other nodes may be connected to the master node through one or more transit nodes. A transit nodes may operate to (1) terminate the link when the alignment/synchronization information is intended for the node, and (2) pass through the alignment/synchronization information to another node without imposing its local clock properties on the passed through alignment/synchronization information. In this way, an end point node may be aligned/synchronized to the master node without a direct link between the two nodes.

    Current-controlled polarization switching vertical cavity surface emitting laser
    3.
    发明申请
    Current-controlled polarization switching vertical cavity surface emitting laser 有权
    电流控制偏振切换垂直腔表面发射激光器

    公开(公告)号:US20040136418A1

    公开(公告)日:2004-07-15

    申请号:US10686208

    申请日:2003-10-14

    申请人: Ziva Corp.

    IPC分类号: H01S003/10

    摘要: A fast current-controlled polarization switching VCSEL with two independent intra-cavity p-contact electrodes and two independent intra-cavity n-contact electrodes positioned along the four sides of the symmetric aperture such that there are two independent p- and n-contact pairs placed on opposite sides of the aperture in a non-overlapping configuration. The anisotropy resulting from the unidirectional current flow causes the light output to be polarized perpendicular to the direction of current flow. A VCSEL driver circuit switches the polarization state of the output light by using the two orthogonal pairs of non-overlapping intra-cavity contacted electrodes to change the direction of current flow into the VCSEL aperture by 90 degrees.

    摘要翻译: 具有两个独立的腔内p接触电极和两个独立的腔内n接触电极的快速电流控制偏振切换VCSEL,沿着对称孔的四个侧面定位,使得存在两个独立的p-和n-接触对 以不重叠的配置放置在孔的相对侧上。 由单向电流引起的各向异性导致光输出垂直于电流方向偏振。 VCSEL驱动电路通过使用两个非重叠腔内接触电极的正交对来切换输出光的偏振状态,以改变流入VCSEL孔径的电流的方向90度。

    Distributed co-operating nodes using time reversal

    公开(公告)号:US09980244B2

    公开(公告)日:2018-05-22

    申请号:US15375052

    申请日:2016-12-09

    申请人: Ziva Corporation

    IPC分类号: H04W56/00 H04L7/033 H04W84/20

    摘要: Dynamic, untethered array nodes are frequency, phase, and time aligned, and used to focus their transmissions of the same data coherently on a target, using time reversal. Alignment may be achieved separately for the radio frequency (RF) carriers and the data envelopes. Carrier alignment may be by phase conjugation. The data is distributed across the nodes. Data distribution and/or alignment may be performed by a Master node of the array. The nodes capture a sounding signal from the target, in the same time window. Each node converts the captured sounding signal to baseband, for example, using in-phase/quadrature downconversion. Each node stores the baseband samples of the sounding pulse. Each node convolves time-reversed samples of the sounding signal with the data, and upconverts the convolved data to radio frequency. The nodes emit their respective convolved and upconverted data so that the emissions focus coherently at the target.

    Distributed co-operating nodes using time reversal
    5.
    发明授权
    Distributed co-operating nodes using time reversal 有权
    分布式合作节点使用时间反转

    公开(公告)号:US09497722B2

    公开(公告)日:2016-11-15

    申请号:US14114901

    申请日:2012-05-02

    摘要: Methods and systems for coherent distributed communication techniques using time reversal are disclosed. In one aspect, cooperating nodes of a cluster can move relative to each other and relative to an intended receiver of the nodes' data transmissions. The nodes are synchronized to a common time reference, and data for transmission from the cluster is distributed to the nodes. The intended receiver sends a sounding signal to the nodes. Each node receives the sounding signal, obtains the channel response between the intended receiver and itself, and time-reverses the channel response. Each node then convolves its time-reversed channel response with the data to obtain the node's convolved data. Each node waits a predetermined time following the time reference signal, as determined based on the common time reference. At the expiration of the predetermined time period, the nodes simultaneously transmit their convolved data.

    摘要翻译: 公开了使用时间反转的相干分布式通信技术的方法和系统。 在一个方面,集群的协作节点可以相对于彼此并相对于节点的数据传输的预期接收器移动。 节点被同步到公共时间参考,并且用于从集群传输的数据被分发到节点。 预期的接收器向节点发送一个探测信号。 每个节点接收探测信号,获得目标接收机与其本身之间的信道响应,并对信道响应进行时间反向。 然后每个节点将其时间反转的信道响应与数据进行卷积,以获得节点的卷积数据。 每个节点等待基于公共时间基准确定的时间参考信号之后的预定时间。 在预定时间段到期时,节点同时发送它们的卷积数据。

    Wireless sensing with time reversal

    公开(公告)号:US09806846B2

    公开(公告)日:2017-10-31

    申请号:US15217944

    申请日:2016-07-22

    申请人: Ziva Corporation

    摘要: In examples, Radio Frequency Iterative Time-Reversal (RF-ITR) and singular value decomposition (SVD) are used by an array of nodes to characterize environment by identifying scatterer objects. The array may be ad hoc dynamic or stationary. The environment is cancelled from the RF-ITR by adjusting Time-Reversal (TR) prefilters, reducing illumination of the scatterer objects in the environment. This enables the RF-ITR process to focus on a moving target, which can then be sensed (discovered, identified, monitoring, tracked, and/or imaged). The moving target on which the RF-ITR process focuses may then be cancelled from the RF-ITR in the same way as the environment, allowing the RF-ITR to focus on another target. Multiple moving targets can thus be sensed. Defensive measures such as jamming may then be taken against the targets. The targets may be distinguished from the scatterer objects in the environment through differential, Doppler processing, and other classification techniques.

    Node synchronization using time reversal

    公开(公告)号:US10177822B2

    公开(公告)日:2019-01-08

    申请号:US15583896

    申请日:2017-05-01

    申请人: Ziva Corporation

    IPC分类号: H04W56/00 H04W84/18 H04B7/024

    摘要: In examples, Radio Frequency nodes of an array are synchronized using Time-Reversal. A Master node (“Master”) of the array receives and captures a sounding signal emitted by a Slave node (“Slave”) of the array, downconverts it to baseband, Time-Reverses the downconverted signal, upconverts the Time-Reversed signal to the carrier frequency using the Master's clock so that the upconverted signal has phase property of the Master's clock, and transmits the resulting signal to the Slave. The Slave receives the signal from the Master, and adjusts the phase of the Slave's clock so that the phases of the two nodes are aligned. Once phases, frequencies, and time references of the array's nodes are aligned, the array may be used for coherent operation. In examples, the array is used to transmit Time-Reversed signals so that the signals from the array's nodes are spatially and temporally focused on a target.

    Synchronization of distributed nodes in wireless systems

    公开(公告)号:US10021659B2

    公开(公告)日:2018-07-10

    申请号:US14494580

    申请日:2014-09-23

    申请人: Ziva Corporation

    摘要: Dynamic, untethered array nodes with internal clocks are frequency, phase, and time aligned/synchronized, and used to focus their transmissions of the same payload data coherently on a target or in the target's direction, using time reversal or directional beamforming. Information for alignment/synchronization may be sent from a master node of the array to the slave nodes, over RF node-to-node links operating on different carrier or subcarrier frequencies. Additionally, the up- and down-communications on the RF links may use different frequencies. The RF links may also be used to distribute the payload data across the array. Because of frequency division on the RF links, interference is reduced or avoided, and the process of alignment/synchronization may be performed concurrently for several or all the slave nodes. The array may also operate collaboratively to receive data from the target.

    Array-to-array beamforming and iterative time reversal techniques

    公开(公告)号:US09793969B2

    公开(公告)日:2017-10-17

    申请号:US15277934

    申请日:2016-09-27

    申请人: Ziva Corporation

    IPC分类号: H04B7/02 H04B7/06 H04B7/024

    摘要: In examples, two arrays of Radio Frequency nodes achieve enhanced beamforming for communications between the arrays by successively sending sounding signals from one array to the other array. Each sounding signal sent by the first of the two arrays is beamformed through time reversal of an immediately preceding sounding signal received by the first array from the second array, and each sounding signal (except the initial sounding signal) sent by the second array is beamformed through time reversal of an immediately preceding sounding signal received by the second array from the first array. The initial sounding signal sent by the second array may be omnidirectional, beamformed through a guesstimate, random, predetermined, or determined through a search of the area where the arrays are located. With sufficient beamfocusing, the arrays may communicate by sending and receiving data from one array to the other array.