INTERIOR MATERIAL HAVING SURFACE LAYER HAVING VISIBLE LIGHT-RESPONSIVE PHOTOCATALYTIC ACTIVITY, AND METHOD FOR MANUFACTURING SAME

    公开(公告)号:US20200230575A1

    公开(公告)日:2020-07-23

    申请号:US16304905

    申请日:2017-06-22

    摘要: The present invention provides: an interior material having a surface layer which has visible light-responsive photocatalytic activity and which contains two types of titanium oxide microparticles, the two types of titanium oxide microparticles comprising first titanium oxide microparticles, in which a tin component and a transition metal component for enhancing visible light responsiveness (excluding iron group components) are in solid solution, and second titanium oxide microparticles, in which an iron group component is in solid solution; and a method for manufacturing the interior material. The present invention makes it possible to provide an interior material in which visible light-responsive photocatalytic titanium oxide microparticles, which make it possible to easily produce a surface layer (photocatalyst thin film) having high transparency and expressing photocatalytic activity even in response to visible light (400-800 nm) only, are applied onto a surface, whereby it is possible to obtain, under indoor illumination, excellent photocatalytic properties such as an antimicrobial property and a property of breaking down chemical substances in indoor air without adversely affecting the design quality of the article in question.

    PROCESS FOR PREPARING A CATALYST AND USE THEREOF

    公开(公告)号:US20200171477A1

    公开(公告)日:2020-06-04

    申请号:US16303707

    申请日:2017-05-23

    申请人: SHELL OIL COMPANY

    摘要: The present invention provides a process for preparing a catalyst, wherein said process comprises:—(i) preparing a mixture of one or more aromatic alcohol monomers and/or non-aromatic monomers, solvent, polymerization catalyst, crosslinking agent, suspension stabilizing agent and one or more metal salts, under conditions sufficient to produce polymeric beads doped with one or more metals or salts thereof; (ii) carbonizing, activating and then reducing the polymeric beads produced in step (i) to produce metal nanoparticles-doped porous carbon beads; (iii) subjecting the metal nanoparticles-doped porous carbon beads produced in step (ii) to chemical vapour deposition in the presence of a carbon source to produce metal nanoparticles-doped porous carbon beads comprising carbon nanofibers; and (iv) doping the metal nanoparticles-doped porous carbon beads comprising carbon nanofibers produced in step (iii) with an oxidant; catalyst prepared by said process; and a process for treating waste water from an industrial process for producing propylene oxide, which process comprises subjecting the waste water to a catalytic wet oxidation treatment in the presence of said catalyst.

    METHOD FOR PREPARING 5-(4-BROMOPHENYL)-4,6-DICHLOROPYRIMIDINE

    公开(公告)号:US20200048206A1

    公开(公告)日:2020-02-13

    申请号:US16243091

    申请日:2019-01-09

    摘要: A method for preparing 5-(4-bromophenyl)-4,6-dichloropyrimidine is provided. The method comprises the steps of: preparing methyl p-bromophenylacetate (Intermediate I) by catalytic esterification of p-bromophenylacetic acid, and then reacting with dimethyl carbonate to synthesize 2-(4-bromophenyl)-malonic acid-1,3-dimethyl ester (Intermediate 2), cyclizing with formamidine hydrochloride to obtain 5-(4-bromophenyl)-4,6-dihydroxypyrimidine (Intermediate 3), and then chlorinating to give the product 5-(4-bromophenyl)-4,6-dichloropyrimidine. In the process of preparing Intermediate 1 in the present invention, a solid acid is used as a catalyst. Moreover, in the process of preparing Intermediate 2, sodium methoxide is used as a base in place of sodium hydride or sodium amide used in the prior art. Furthermore, Intermediate 3 is prepared by a one-pot process.