摘要:
A circuit includes a period calculator and a pulse width calculator. The period calculator is configured for receiving a first predetermined digital code and a second predetermined digital code, and for calculating a first calculated period value according to the first predetermined digital code, and calculating a second calculated period value according to the second predetermined digital code. The first predetermined digital code has a first predetermined period value, and the second predetermined digital code has a second predetermined period value. The pulse width calculator is configured for receiving a predetermined pulse width, and calculating a first pulse width code corresponding to the predetermined pulse width according to the first predetermined period value, the second predetermined period value, the first calculated period value, the second calculated period value and the predetermined pulse width.
摘要:
A ring oscillator including a plurality of flip-flops is provided. The flip-flops are connected in a ring. The flip-flops are configured to start to oscillate according to a start signal to generate an output signal, and stop oscillating according to a stop signal to stop generating the output signal. When the stop signal changes from a first level to a second level, the output signal becomes floating. In addition, a time measuring circuit including the foregoing ring oscillator is also provided.
摘要:
A physical quantity measurement apparatus includes a first resonator, a second oscillator, and an integrated circuit device. The integrated circuit device includes a first oscillation circuit that causes the first resonator to oscillate, and thus generate a first clock signal having a first clock frequency, a second oscillation circuit that causes the second oscillator to oscillate, and thus generate a second clock signal having a second clock frequency which is different from the first clock frequency, and a measurement unit that is provided with a time-to-digital conversion circuit which converts time into a digital value by using the first clock signal and the second clock signal.
摘要:
To synchronize, in a system in which a plurality of devices perform measurement, measurement timings with each other with a simple configuration. A sensing system includes a plurality of sensor devices. The sensor devices each include a trigger sensor and a target sensor. In the sensor device, the trigger sensor measures a signal value of a trigger signal. Also, in the sensor device, the target sensor starts to measure a physical quantity when the signal value measured by the trigger sensor satisfies a predetermined condition.
摘要:
A physical quantity measurement apparatus includes a first resonator, a second oscillator, and an integrated circuit device. The integrated circuit device includes a first oscillation circuit that causes the first resonator to oscillate, and thus generate a first clock signal having a first clock frequency, a second oscillation circuit that causes the second oscillator to oscillate, and thus generate a second clock signal having a second clock frequency which is different from the first clock frequency, and a measurement unit that is provided with a time-to-digital conversion circuit which converts time into a digital value by using the first clock signal and the second clock signal.
摘要:
The present invention makes it possible to measure a precision event time in such a way to make a reference data in accordance with a standard time reference frequency signal and to make a measurement data by using an apparatus with the same structure as a reference data with respect to a signal to be measured and to compare the measurement data with a reference data, whereby temperature effects can be minimized by making the time changes due to temperature changes occurring between two apparatuses happen equally, by providing the same structure and parts to a reference signal circuit apparatus for an event time measurement and a signal circuit apparatus to be measured, and the zero point adjustment is performed during the real time operation, so the system is not needed to stop.
摘要:
A digital event generator includes a counter configured to provide at least one count value based on a clock signal, and a comparator configured to evaluate a first portion of a first count value to detect a near occurrence of an event, in response to a detection of a near occurrence of an event, evaluate a second portion of a second count value, and provide the event signal based on the evaluation and digital event time information. A switched mode energy converter uses said digital event generator.
摘要:
An electric counter circuit (30, 40, 80) comprises a clock generator (1, 54, 111, 120, 130) for generating a plurality of clock signals (21-24, 121-125, 131-134) and a sampling device (32, 81) for sampling the clock signals (21-24, 121-125, 131-134) at a first moment in time when a first characteristic signal section (LE) of a digital signal (DS) appears. Furthermore, the circuit (30, 40, 80) comprises a calculation device (33) for calculating the time between the first moment and a second moment which is later than the first moment. This calculation is based on the clock signals (21-24, 121-125, 131-134) at the first moment and based on the clock signals (21-24, 121-125, 131-134) at the second moment. The clock signals (21-24, 121-125, 131-134) each have the same cycle duration (T) and are phase-shifted with respect to each other.
摘要:
Random number generators are used for entertainment in gambling, lotteries and video gaming devices. True Random Number Generators, as are now currently defined, must be actuated by a physical noise source, typically based on the uncertainty of the phase differences of a stable and an unstable autonomous oscillator. In this invention an autonomous random frequency modulated oscillator driven by a self contained pseudo-random number generator outputs three loosely correlated random binary streams. Included in the invention is a hardware method for proving wandering phase differences and also the existence of a colored random distribution of concatenated nibbles.
摘要:
A device for high accurate measurement of time intervals is based on the conversion of the time interval to a sequence of samples of the response of a surface acoustic wave filter excited at the beginning and at the end of the measured interval. In one of its configurations, the time interval measurement device includes the input of the pulse signal, the filter exciter, the surface acoustic wave filter, the amplifier, the sampler, the analog-to-digital converter, the sample registers, the register of sample numbers, the voltage comparator, the control circuits, the sample counter, the computer, the output of the reference clock signal source, and the output of the measured time intervals.