Abstract:
An internal combustion engine is provided with a VVT mechanism capable of adjusting overlap period in which both intake and exhaust valves are open. The internal combustion engine is also provided with a recirculation mechanism that recirculates exhaust gas to the intake side. An EGR map from which internal EGR amount based on the VVT mechanism and external EGR amount based on the recirculation mechanism are derived in accordance with engine speed and engine torque is prepared. The EGR map is realized as a four-dimensional map that also takes engine intake air temperature and engine coolant temperature into account. By performing EGR control in consideration of these parameters, the occurrence of knocking during EGR control can be suppressed, and an improvement in fuel consumption and the like can be achieved with certainty.
Abstract:
An engine with an efficient valve actuator is disclosed. The engine employs a first force to hold a valve of the engine open during a normal valve event and a second force to hold the exhaust valve open during an exhaust gas recirculation event. The valve actuator may be operated using pressurized fluid adapted to extend an actuator plunger through a cylinder. The first force may be derived by a mechanically driven actuator, while the second force may be derived from a high pressure rail of the engine. A control valve may be employed to direct either low pressure or high pressure oil to the valve actuator cylinder.
Abstract:
Soot induced kinematic viscosity increase of lubricating oil compositions for heavy duty diesel engines equipped with EGR systems operating in a condensing mode can be ameliorated by selection of viscosity modifier, lubricating oil flow improvers, detergents and dispersants.
Abstract:
An exhaust gas recirculation systems directs exhaust gasses from an exhaust manifold to an intake manifold of an internal combustion engine. The exhaust gasses travel from the exhaust manifold, first passing through a flow control valve and then through a measuring orifice before entering the intake manifold. Pressure upstream of the orifice is used, along with correction pressure downstream of the orifice, to measure and control exhaust gas flow. Further, manifold pressure is determined from downstream pressure and the used along with the measured exhaust gas flow to calculated a cylinder air charge amount.
Abstract:
The goal is to reliably diagnose and compensate for a change in the gas flow passing through an exhaust gas recirculation line. For this purpose, according to a first method, the mass flow passing through the exhaust gas recirculation line is derived as a function of the position and the flow characteristic of the exhaust gas recirculation valve, and, according to a second method, the mass flow is derived from the fresh-air mass flow in the induction pipe and from the induction pipe pressure. Then the difference is determined between the mass flows as ascertained in accordance with the two methods, and from the difference one or plurality of correcting quantities is generated for the mass flow that is derived as a function of the valve position and of the flow characteristic.
Abstract:
An exhaust gas recirculation (EGR) cooling system includes a valve and a cooler. A motor opens the valve allowing hot fluid exhaust gas to flow into the valve. Cooling fluid continuously flows in and circulated around the valve, reducing the amount of heat transfer from the hot fluid to the valve components. The hot fluid travels through a plurality of tubes in the cooler, continuing to transfer heat to the cooling fluid. As the hot fluid is cooled, the unburned gas in the hot fluid is recycled to be burned by the engine.
Abstract:
In an internal combustion engine having an exhaust gas recirculation circuit, the efficiency of a turbocharger is raised in a wide engine rotational speed area and, even when a pressure in an intake circuit is higher than that in an exhaust circuit, an exhaust gas can be circulated. For this purpose, an openable intake throttle valve (12e) is provided on the more upstream side than an exhaust gas circulation position of the intake circuit (12), or a narrow portion (12b) is formed on the exhaust gas circulation position of the intake circuit and an intake bypass circuit (12c) for bypassing the narrow portion is provided. Further, an intake and exhaust bypass circuit (20) for connecting the intake circuit to the exhaust circuit (16) is provided. Then, the opening degree of the intake throttle valve or intake bypass circuit and the opening degree of the intake and exhaust bypass circuit are adjusted so as to set the pressure at the exhaust gas circulation position of the intake circuit to be lower than that in an exhaust manifold (16a).
Abstract:
A system for diagnosing fault conditions associated with an air handling system for an internal combustion engine includes an air handling control mechanism responsive to a mechanism command to control fluid flow through an air handling system of an internal combustion engine. An engine controller is configured to compute predicted responses of a number of engine operating parameters each as a different function of the mechanism command, and to compute a corresponding number of correlation coefficients each as a function of one of the engine operating parameter signals and a corresponding one of the predicted responses. The controller is operable to diagnose a fault associated with the air handling control mechanism if at least some of the correlation coefficients are below a first threshold, and to diagnose a properly functioning air handling control mechanism if at least some of the correlation coefficients are above a second threshold.
Abstract:
A flow modifier for insertion into the chamber of a large pintle valve to change the apparent flow range of the valve to that of a smaller valve. The flow modifier includes a perforated cup-shaped restrictor disposed within the valve on the valve pintle and sealingly surrounding the valve seat such that all flow through the valve must pass through the passageways in the restrictor. The restrictor is held in place by a compression spring surrounding the pintle. The total open area of the passageways may be varied by varying their number and/or size and is preferably substantially less than the open area of the valve seat. The restrictor thus acts as a flow choke or fixed throttle to reduce the flow range of the valve. Different restrictors may be provided as required to size a single large valve having a large inherent flow range to a plurality of applications requiring valves having smaller flow ranges. A further embodiment includes a valve head resiliently and articulably mounted on the internal end of the valve pintle. The head is free to move axially and/or radially and/or rotationally with respect to the pintle as directed by the mating surface of the valve seat to effect a seal therewith.
Abstract:
An internal combustion engine, particularly suitable for a motor vehicle, is provided with a plurality of combustion cylinders, at least a first exhaust manifold and a second exhaust manifold and at least one intake manifold. Each exhaust manifold is coupled with a plurality of the combustion cylinders. Each intake manifold is coupled with a plurality of the combustion cylinders. A first turbocharger includes a first turbine having at least one inlet and an outlet, and a first compressor having an inlet and an outlet. The at least one first turbine inlet is a fixed geometry inlet fluidly coupled with the first exhaust manifold. A second turbocharger includes a second turbine having an inlet and an outlet, and a second compressor having an inlet and an outlet. The second turbine inlet is a fixed geometry inlet fluidly coupled with the second exhaust manifold. The first compressor outlet is fluidly coupled with the second compressor inlet. The engine has improved performance and efficiency, with an efficient and compact turbocharger arrangement, and is economical to manufacture and operate.