Abstract:
A hydraulic control system includes an oil control valve to control oil flow within a valvetrain. The control valve varies the flow rate to actuate an engine component from a first position to a second position based upon fluid pressure from the control valve. Varying the flow rate through the control valve includes increasing the flow rate through the control valve to increase the pressure to a first level to actuate the engine component to the first position. After the engine component is actuated, the flow rate through the control valve is maintained at a level sufficient to maintain the engine component in the first position. To actuate the engine component to the second position the flow rate through the control valve is then decreased. The fluid flow rate through the control valve is then maintained at a level sufficient to maintain the engine component in the second position.
Abstract:
Methods of, and apparatus for, storing and transporting a hazardous fluid, such as a combustible fuel, include methods and means, respectively, for: (a) treating the fluid to reduce its hazardous condition; (b) storing and/or transporting the treated fluid in such a manner that the risk of its hazardous condition remains reduced; (c) thereafter retreating the fluid to restore it to its original hazardous condition so that the fluid may be used in its restored condition. The hazardous fluid may be treated by adding a substance to, or removing a substance from, the fluid, or by changing the state of the fluid. For example, if the fluid is a fuel, it may be treated by cooling it to near or below its freezing temperature to reduce its combustibility, volatility, explosivity and/or ease of ignition.
Abstract:
An automotive fuel tank storage system includes a fuel storage tank installed in a vehicle and a barrier fluid tank containing a supply of barrier fluid. A distribution system connected with the barrier fluid tank and with the fuel storage tank distributes barrier fluid about the outer periphery of the fuel contained within the storage tank in the event of a collision event, creating a boundary layer of more viscous fluid which inhibits exfiltration of the fuel from the fuel storage tank.
Abstract:
A system automatically maintains at least one of a pH level and a sanitizing agent level of water in a water feature. The system includes a sensor assembly responsive to at least one of a pH level of the water and a sanitizing agent level of the water. The system further includes a controller which generates control signals in response to signals from the sensor assembly. The system further includes at least one of a first source containing an sanitizing agent material and a second source containing a pH-modifying material. The system further includes a third source comprising a valve assembly and a third container containing a liquid calibrant material. The valve assembly is responsive to at least a portion of the control signals from the controller by selectively allowing the calibrant material to flow from the third container through the sensor assembly to the water feature.
Abstract:
In a fuel vapor release suppression system for a fuel tank, a main tank and a sub tank communicate with each other, and the sub tank and a canister communicate with each other. When the main tank has a higher temperature, fuel vapor of the main tank is supplied to the sub tank where the fuel vapor is liquefied. When the main tank has a lower temperature, fuel vapor of the sub tank is supplied to the main tank. At this time, low concentration fuel vapor is supplied from the canister to the main tank, thereby accelerating generation of fuel vapor corresponding to sub tank fuel vapor pressure, so that the sub tank fuel vapor pressure decreases. Therefore, liquefaction is accelerated in the sub tank when the main tank temperature increases. Thus, fuel vapor generated in a fuel tank is effectively liquified irrespective of ambient air temperature.
Abstract:
A pressurized wastewater effluent chlorination system including a treatment tank defining a contact chamber and an aeration chamber. The treatment tank receives wastewater effluent. The system includes a pressure vessel within a liquid chlorine storage container positioned in or near the treatment tank. Preferably, the pressure vessel is a floating vessel having a check valve at its bottom, enabling the vessel to fill with a predetermined amount or measured charge of chlorine depending on the position of a float on the vessel. In response to a timer control or float switch, a valve operates to communicate air pressure from a compressor to the vessel to displace the measured charge of liquid chlorine into the wastewater effluent in the contact chamber. Effluent flow and air discharge into the contact chamber enhances mixing of the chlorine and the effluent.
Abstract:
A system and method for extracting active elemental iodine from the contact of water with stored crystal iodine and for introducing the extracted elemental iodine into a water supply line and/or otherwise making the extracted elemental iodine available for an intended use. The system operates by allowing a portion of the water entering from a water supply line to be redirected to a first housing where it makes contact with stored crystal iodine causing to extract active elemental iodine. The iodinized water leaves the first housing and enters a second housing where it makes contact additional stored crystal iodine to help stabilize the elemental iodine concentration. The system can be designed to provide the elemental iodine in more than one potency concentration through the use of a metering valve and different travel routes for the elemental iodine out of the second housing.
Abstract:
In a fuel vapor release suppression system for a fuel tank, a main tank and a sub tank communicate with each other, and the sub tank and a canister communicate with each other. When the main tank has a higher temperature, fuel vapor of the main tank is supplied to the sub tank where the fuel vapor is liquefied. When the main tank has a lower temperature, fuel vapor of the sub tank is supplied to the main tank. At this time, low concentration fuel vapor is supplied from the canister to the main tank, thereby accelerating generation of fuel vapor corresponding to sub tank fuel vapor pressure, so that the sub tank fuel vapor pressure decreases. Therefore, liquefaction is accelerated in the sub tank when the main tank temperature increases. Thus, fuel vapor generated in a fuel tank is effectively liquified irrespective of ambient air temperature.
Abstract:
The Fuel supply system reduces fuel quantity initially supplied and ineffective residual quantity of fuel. A throat in the shape of a passage is provided at a bottom portion of a sub-tank that supplies fuel from the fuel tank to the interior of the sub-tank by a jet pump. The throat has a suction port communicating with the exterior of the sub-tank and a supply port communicating with the interior of the sub-tank. The throat is inclined with respect to a bottom surface of the tank so that the height of the throat increases gradually from the suction port toward the supply port. The sub-tank has a check valve for opening and closing the supply port. This check valve prevents the fuel in the sub-tank from flowing out to the exterior of the sub-tank through the throat and becomes substantially vertical during valve closing.
Abstract:
An airplane fuel supply system includes a wing fuel tank that is formed from a wing tip fuel tank having a wing tip fuel pump; a central fuel tank having a central fuel pump; and a wing root fuel tank having a wing root fuel pump. Fuel movement from the wing tip fuel tank to the central fuel tank is allowed by a flapper valve, and fuel movement from the central fuel tank to the wing root fuel tank is allowed by another flapper valve. When the fuel delivery volume of the wing tip fuel pump is represented by Vt, the fuel delivery volume of the central fuel pump is represented by Vc, the fuel delivery volume of the wing root fuel pump is represented by Vr, and the fuel delivery volume from a collector tank to the engine is represented by Ve, the fuel delivery volumes Vt, Vc, Vr, and Ve are set so as to satisfy the relationships Vr>Ve, Vt+Vc>Ve, and Vc