Abstract:
There is provided an earphone device of an ear-hole insertion type having a noise cancelling function, the earphone device including a left channel housing unit that accommodates a left channel driver unit outputting a left channel sound; and a right channel housing unit that accommodates a right channel driver unit outputting a right channel sound. A microphone for noise cancelling and a battery are accommodated in each of the left and right channel housing units.
Abstract:
The disclosure provides an earphone and a fabrication method thereof. The earphone includes: an earphone wire, wherein the earphone wire includes flexible wire parts and hard wire parts which are arranged alternately. The technical scheme provided in the disclosure solves the problem existing in the related technologies that earphone wires entwine easily and cannot be untangled readily and therefore effectively avoids the entwining of earphone wires and improves user experience.
Abstract:
Disclosed is an earset. The earset includes: a case that forms an appearance thereof; an ear pad that is mounted in an end portion of the case, forms a communication hole communicating with a user's external auditory canal, and is attached to/detached from a user's ears; and a soundproof housing that is received in the case, and includes a speaker output hole for transmitting sound generated from a speaker to the communication hole of the ear pad, a microphone input hole for transmitting the sound transmitted from the user's ears to the communication hole of the ear pad to a microphone, a speaker accommodating groove for accommodating the speaker while communicating with the speaker output hole, a microphone accommodating groove for accommodating the microphone while communicating with the microphone input hole, and one or more back holes for allowing a part of sound flowing into the microphone input hole to flow into a rear surface of the microphone accommodated in the microphone accommodating groove while communicating with the microphone input hole.
Abstract:
There is provided a headphone or headset comprising at least one housing, at least one microphone for detecting interference sound, at least one active noise compensation unit for implementing active noise compensation based on the interference sound detected by the at least one microphone and for the output of a compensation signal. The headphone or the headset has at least one electroacoustic reproduction transducer for output of the compensation signal from the noise compensation unit and a circumaural cushion having a recess for receiving a spectacles side arm. The active noise compensation unit is adapted in noise compensation to take account of the effect of the recess in the ear cushion.
Abstract:
A noise cancelling headset includes first and second earpieces, each earpiece including a respective feedback microphone, a respective feed-forward microphone, and a respective output driver. A first feedback filter receives an input from at least the first feedback microphone and produces a first filtered feedback signal. A first feed-forward filter receives an input from at least the first feed-forward microphone and produces a first filtered feed-forward signal. A first summer combines the first filtered feedback signal and the first filtered feed-forward signal and produces a first output signal. An output interface provides the first output signal as an output from the headset.
Abstract:
A system for audio content delivery to an in-the-ear device from a local computing device. Also, a system for audio content delivery to an in-the-ear device from a content delivery network. The in-the-ear device is sized and shaped such that it universally and ergonomically fits into the human ear without slipping out and provides the user with a comfortable fit. The in-the-ear device is secured in the user's ear taking advantage of the natural curvature of the human to provide support and shift the center of gravity from outside the ear to further inside the pinna to prevent the device from slipping out while retaining a high level of comfort.
Abstract:
Provided are communication devices having adaptable features and methods for implementation. One device includes at least one adaptable component and a processor configured to detect an external cue relevant to operation of the at least one adaptable component, to determine a desired state for the at least one adaptable component corresponding to the external cue, and then to dynamically adapt the at least one adaptable component to substantially produce the desired state. One adaptable component comprises at least one adaptable speaker system. Another adaptable component comprises at least one adaptable antenna.
Abstract:
A backward compatible system and method for using 4P audio jack in an electronic device to provide power and signal to headset with active noise cancellation (ANC) as well as accessories that require an external power are disclosed. The method involves automatically deciding at the electronic device accessory type after accessory insertion detected and choosing proper accessory communication mode based at least on the decided accessory type and accessory input signal. The accessory communication mode may be an accessory power mode or an accessory microphone mode.
Abstract:
A method in a first electronic mobile device for adapting audio performance parameters is provided. The first electronic mobile device performs an audio interaction with a second electronic device. The first electronic mobile electronic device is associated with at least one earpiece comprising at least one speaker and at least one microphone. The method comprises detecting an acoustic echo between the at least one speaker and the at least one microphone, determining, based on the detected acoustic echo, position of the at least one earpiece in relation to a user of the first electronic mobile device, and adapting audio performance parameters, based on the detected position of the earpiece, whereby less echo during the audio interaction is achieved in the second electronic device.
Abstract:
A wireless audio receiver comprises a housing with a wireless transceiver and a battery disposed therein. An audio cord comprises an audio wire with a pair of earbuds at one end and an audio connection at an opposite end coupled to the housing. A flexible band is coupled to the housing at a proximal end and extends to a distal free end. A magnetic coupling is between the distal free end of the flexible band and the housing. The flexible band and the housing form a ring for enclosing and securing a portion of the audio cord wound around the housing of the wireless audio receiver and secured by the flexible band. The flexible band and the housing form a clip capable of gripping an article of clothing in the magnetic coupling.