Abstract:
The invention provides a sputter target material. The sputter target material comprises an alloy system comprising Cr—C, Cr—M—C or Cr—M1—M2—C, wherein C comprises at least 0.5 and as much as 20 atomic percent; M comprises at least 0.5 and as much as 20 atomic percent and is an element selected from the group consisting of Ti, V, Y, Zr, Nb, Mo, Hf, Ta, and W; M1 comprises at least 0.5 and as much as 20 atomic percent and is an element selected from the group consisting of Ti, V, Zr, Nb, Mo, Hf, Ta, and W, and M2 comprises at least 0.5 and as much as 10 atomic percent and is an element selected from the group consisting of Li, Mg, Al, Sc, Mn, Y, and Te. A magnetic recording medium comprising a substrate and at least an underlayer comprising the sputter target material of the invention also is provided. A method of manufacturing a sputter target material further provided. The method can employ powder materials comprising a combination of elements can include a chromium alloy, a carbide or carbon containing master alloy.
Abstract:
A perpendicular magnetic recording medium is manufactured having excellent thermal stability and recording performances across the entire disk surface. In one embodiment, the recording layer includes at least two layers deposited by using a reactive sputtering method under an oxygen-containing atmosphere at a deposition rate larger than the second recording layer which is formed on the first recording layer while depositing the first recording layer on the intermediate layer.
Abstract:
A magnetic recording medium that enables enhancement of squareness ratio and Hn and exhibits excellent noise characteristics and thermal stability is disclosed. A production process for the medium, and a magnetic recording and reproducing apparatus are also disclosed. The magnetic recording medium including a substrate 1, a carbon-containing carbon undercoat film 2 formed thereon, and a perpendicular magnetic film 3, in which most of easy-magnetization axes are oriented vertically with respect to the substrate, formed on the undercoat film. The perpendicular magnetic film is formed through a plurality of sputtering operations using at least one element selected from Pt and Pd and through a plurality of sputtering operations using a Co-containing material.
Abstract:
A first group of atoms is first deposited for forming a multilayered structure film. The atoms are subjected to heat treatment to form a first polycrystalline layer. A second group of atoms is deposited on the surface of the first polycrystalline layer so as to form a second polycrystalline layer having a thickness larger than the thickness of the first polycrystalline layer. A third group of atoms is deposited on the surface of the second polycrystalline layer so as to form a magnetic polycrystalline layer. The method enables a reliable prevention of migration of atoms in the first group during the deposition of the first group. This enables establishment of fine and uniform crystal grains in the first polycrystalline layer. Migration can still be suppressed during the deposition of the second group. Fine and uniform crystal grains can thus be established in the second polycrystalline layer.
Abstract:
A reactive sputtering method is provided for producing a magnetic layer in a stable manner with good reproducibility. One aspect of the invention is to form a magnetic layer for a magnetic recording medium without adversely affecting magnetic properties. Carbon oxide gas is added at the time of reactive sputtering. In one embodiment, a method for producing a magnetic recording medium includes forming at least a soft magnetic layer and a magnetic layer above a substrate, wherein forming said magnetic layer includes sputtering with argon gas and carbon oxide gas.
Abstract:
A magnetic recording medium is disclosed which eliminates the difficulty of stably forming tiny recording magnetic domains during high density recording. The magnetic recording medium is constituted such that at least a recording layer is provided on a disk substrate, and the recording layer is bonded with hydrogen and is in a localized and stable state of coupling with a rare earth metal, as well as a method for manufacturing this medium. As a result, the magnetic anisotropy of the recording layer is increased and a stable film structure can be formed, which stabilizes the recording magnetic domains even when the mark length is reduced, and greatly increases recording density without reducing the reproduction signal amplitude.
Abstract:
A magnetic recording medium is provided with an hcp Co alloy magnetic layer with the crystallographic c-axes tilted at an angle from a substrate surface and fixed relative to a recording direction. The tilt is induced by epitaxial growth of the hcp Co alloy on an obliquely evaporated nonmagnetic polycrystalline underlayer, so that the magnetic recording medium exhibits thermal stability and improved overwrite with a single pole-type head.
Abstract:
A method of influencing variations in composition of thin films is described. The elemental plasma field distribution in sputtering systems is manipulated by generating a nonuniform electric field along a surface of the substrate to alter the composition by differentially re-sputtering the target elements. The nonuniform electric field is used to modulate the kinetic energy of the ions generated in the plasma which strike the thin film's surface. By applying varying electric potentials at a plurality of points on a conductive surface of a substrate, the electric field across the surface of the substrate can be modulated in a variety of patterns. In the preferred embodiment a radial voltage gradient is applied to a conductive surface of a disk on which a magnetic thin film is being formed to radially modulate the platinum content of the magnetic film.
Abstract:
A sputter target, where the sputter target is comprised of Co, greater than 0 and as much as 24 atomic percent Cr, greater than 0 and as much as 20 atomic percent Pt, greater than 0 and as much as 20 atomic percent B, and greater than 0 and as much as 10 atomic percent X1, where X1 is an element selected from the group consisting of Ag, Ce, Cu, Dy, Er, Eu, Gd, Ho, In, La, Lu, Mo, Nd, Pr, Sm, Tl, W, and Yb. The sputter target is further comprised of X2, wherein X2 is selected from the group consisting of W, Y, Mn, and Mo. Moreover, the sputter target is further comprised of 0 to 7 atomic percent X3, wherein X3 is an element selected from the group consisting of Ti, V, Zr, Nb, Ru, Rh, Pd, Hf, Ta, and Ir. The thin film sputtered by the sputter target has a coercivity value between 1000 Oersted and 4000 Oersted.
Abstract:
A method for manufacturing a magnetic recording medium, the method comprising forming a magnetic layer on at least one side of a flexible polymer support by a sputtering method, wherein the flexible polymer support contains at least one of polyethylene terephthalate, polyethylene naphthalate, polyamide and polyimide, the forming of a magnetic layer is carried out while carrying the flexible polymer support along a roll having a maximum surface roughness of from 0.01 to 0.4 μm, and a deposition rate in the sputtering method for forming of a magnetic layer is from 0.5 to 17 nm/sec.