Abstract:
A digital image capturing and processing system including an image formation and detection (IFD) subsystem having a linear image sensing array and optics providing a field of view (FOV) on the linear image sensing array. A spectral-mixing based illumination subsystem produces a first field of visible laser illumination produced from an array of visible VLDs, and a second field of invisible laser illumination produced from an array of IR laser diodes (LDs) that spatially overlap and intermix with each other so as to produce a composite planar laser illumination beam which is substantially with the FOV of the linear image sensing array. An illumination control subsystem controls the spectral mixing of visible and invisible laser illumination produced from the spectral-mixing based illumination subsystem, by adaptively controlling the relative power ratio (VIS/IR) of said fields of visible and invisible laser illumination. An image capturing and buffering subsystem captures and buffers images from the image sensing array. An automatic object detection subsystem automatically detects the an object moving through at least a portion of the FOV of the linear image sensing array, and generation a control activation signal. A control subsystem, responsive to the control activation signal, controls the operations of the subsystems within the illumination and imaging station.
Abstract:
A digital image capturing and processing system comprising a plurality of coplanar illumination and imaging subsystem for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume defined relative to an imaging window. Each coplanar illumination and imaging subsystem includes a local object motion detection subsystem for detecting the motion of objects moving through the 3D imaging volume, and a local control subsystem for controlling the state of operations within each coplanar illumination and imaging station during system operation. Each coplanar illumination and imaging subsystem has an object detection state and a code symbol reading state of operation, and includes one or more planar illumination modules (PLIMs) for producing at least one substantially planar illumination beam (PLIB), and a linear image detection array having a field of view (FOV) on the linear image detection array and extending in substantially the same plane as the PLIB, to provide a coplanar illumination and imaging plane (PLIB/FOV) that is projected through the 3D imaging volume, for capturing linear (1D) digital images of an object passing therethrough, for subsequent processing and recognition of information graphically represented in the linear digital images. When a local object motion detection subsystem automatically detects the motion of an object passing through at least a portion of the 3D imaging volume, a global control subsystem cooperates with the local control subsystems to manage the state of operation of each coplanar illumination and imaging subsystem, e.g. by driving one or more of coplanar illumination and imaging subsystems into the code symbol reading state of operation.
Abstract:
A method of and system for identifying a consumer product in a retail store environment when a bar code symbol on a product is not readable or has been removed from the product's packaging. The system comprises a database system, and a digital image capturing and processing system installed in the retail environment and in data communication with the database system. The digital image capturing and processing system is capable of capturing one or more digital images for each consumer product sold in the retail store environment, and storing the digital images in the database subsystem, along with product identifying information for each consumer product. When the imaged bar code symbol happens to be unreadable, or when the bar code symbol label happens to have fallen off or have been removed from the packaging, then one or more digital images of the consumer product are compared with digital images stored in the database subsystem to identify the consumer product graphically represented in the digital images.
Abstract:
The invention relates to a bar code reading device of the type having an imaging assembly including a two dimensional image sensor and which may be moved between varying positions, orientations and angles relative to a substrate. In one embodiment a bar code reading device can be used to obtain an area electronic representation of a substrate including bar code indicia and a signature, and can output an area representation including a representation of a signature. In another embodiment, the bar code reading device can process and output a processed area electronic representation to an output destination. In one embodiment an output destination to which a bar code reading device outputs a processed area electronic representation is a display.
Abstract:
A POS-based digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises a coplanar illumination and imaging station for projecting at least one coplanar illumination and imaging plane into an imaging volume during object illumination and imaging operations. The coplanar illumination and imaging station includes an illumination subsystem for producing a first field of visible illumination from an array of visible VLDs, and producing a second field of invisible illumination from an array of infrared (IR) laser diodes (IR-LDs). Wherein the first and second fields of illumination spatially overlap and intermix with each other and are substantially coplanar with the FOV of the linear image sensing array. An automatic object detection subsystem automatically detects an object moving through the imaging volume, while an illumination control subsystem controls the relative power ratio (VIS/IR) of visible illumination and invisible illumination during system operation so as to minimize the amount of visible illumination energy required to capture sufficiently high-contrast images of said objects and successfully process the same.
Abstract:
An automatic digital-imaging based code symbol reading system supporting a presentation mode of system operation, automatic object direction detection and illumination control, and video image capture and processing techniques. By virtue of the present invention, the automatic digital-imaging based code symbol reading system ensures the reliable reading of code symbols graphically represented in digital images, in high-throughput point-of-sale and other environments.
Abstract:
Apparatus and methods consistent with the present invention provide for reading an identification code from a mailpiece. In one embodiment, there are a reader unit and a reader head assembly connected by an optical cable, which provide for the identification of a mailpiece in an identification code sorting system.
Abstract:
A digital image capture and processing system employing automated real-time analysis of digital image exposure quality to automatically reconfigure system control parameters, and dynamically control illumination and imaging operations within the digital image capture and processing system.
Abstract:
An omni-directional digital image capturing and processing system comprising a plurality of coplanar illumination and imaging stations for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume. Each coplanar illumination and imaging station includes a linear image detection array, a linear illumination array, and an object motion and velocity detection subsystem for automatically detecting the motion and velocity of an object that passes through at least a portion of one coplanar linear illumination and imaging plane, and automatically adjusting one or more parameters relating to the exposure and/or illumination control within the coplanar illumination and imaging station. By virtue of the present invention, it is possible to capture and process high quality digital images of objects passed through 3D imaging volumes, at point-of-sale (POS) retail stations and like environments.
Abstract:
Methods and apparatus are disclosed for selectively reading a barcode, symbol, or other indicia by either scanning the barcode with a flying-spot scanner, or by imaging the barcode, thereby improving reading performance by tailoring the reading method to the particular item that is being read. Both a flying-spot laser scanning front end and an imaging front end are incorporated in a single device. Data obtained by the selected reading method is decoded and output. A common decoder or separate decoders may be used to decode the data from the two front ends. A single image sensor may be shared between the flying-spot front end and the imaging front-end, with a limited readout area utilized for laser scanning. The size of the readout area may be adjusted based on detected target proximity. Selection of the reading mode may be based on criteria including manual input, the range of the target, or previous failed attempts to read the barcode using either reading method. An integrated data reader in a console configuration may include a window having a special area in the corner or elsewhere for collecting data by presentation to the imaging front-end, with the flying-spot front end, with its larger depth of field, being utilized for general scanning through the window.