Abstract:
A method and apparatus for the sterilization of air by destroying viral and/or biological contaminants is disclosed. Large concentrations of ozone mix with ambient air in a mixing chamber with a residence time long enough to destroy the contaminants. An ozone concentration high enough to efficiently destroy said contaminants, is inherently too high to be inhaled by people. This ozone laden, decontaminated air is then scrubbed or catalyzed to reduce the ozone concentration, below the current OSHA limits of 0.1 ppm for an 8-hour continuous exposure. The nullconditionednull air can then be delivered to an indoor space. Incorporated in this decontamination apparatus is an ozone interlock system, which ensures that residual ozone does not enter the indoor air space.
Abstract:
A carbon-based electrode device and a DDBD system for air purification and the production of ozone. The air treatment system is designed, in one embodiment thereof, to be operational in a double stage cycle involving the production of ozone-enriched air and the disintegration of air-borne pollutants, in a first stage; and the decomposition of residual ozone in the air, in a second stage. The multi-electrode crisscross array of the present invention features geometrical placement of the electrodes in triads to increase the efficiency of the system via two parameters, the close proximity of oppositely charged electrodes and the multiplicity of electrodes configured in triads, that is, crisscross arrays of three.
Abstract:
An air conditioning apparatus incorporates an ion generating device that generates positive and negative ions by applying an alternating-current voltage between electrodes. The generated positive and negative ions coexist in the air and, when they attach to the surfaces of airborne bacteria, they react chemically with each other and generate radical hydroxyl and hydrogen peroxide, which extract hydrogen atoms from the cells of the bacteria and thereby kill them. This sterilizing effect is combined with the temperature-conditioning, dehumidifying, humidifying, air-purifying, and other functions of the air conditioning apparatus to bring about a comfortable and healthful indoor environment.
Abstract:
A microbe propagation preventing apparatus and a microbe propagation preventing method are provided to prevent anion from decreasing at a time of decomposing ozone generated by gaseous discharge or ionization so as to sufficiently generate air ion, and to sufficiently prevent propagation of microbes adhering to an object by using the air ion without secondary pollution. Further, in the apparatus and the method, a gas containing the ion is supplied into water so as to prevent the microbe propagation in the water. In the apparatus, an ozone decomposing chamber is mounted to be electrically insulated from an air duct. An electrode to remove a positive ion is mounted to obtain only a negative ion, and extend a lifetime of the obtained ion. An ion supplying portion is mounted to supply an ionized gas into a space housing the object in which microbes can be propagated, and return the ionized gas to an ionization chamber. Further, a diffusing apparatus is provided to transform the ionic gas into bubbles so as to feed the bubbles into the water in the water reservoir.
Abstract:
A microbe propagation preventing apparatus and a microbe propagation preventing method are provided to prevent an ion from decreasing at a time of decomposing ozone generated by gaseous discharge or ionization so as to sufficiently generate air ion, and to sufficiently prevent propagation of microbes adhering to an object by using the air ion without secondary pollution. Further, in the apparatus and the method, a gas containing the ion is supplied into water so as to prevent the microbe propagation in the water. In the apparatus, an ozone decomposing chamber is mounted to be electrically insulated from an air duct. An electrode to remove a positive ion is mounted to obtain only a negative ion, and extend a lifetime of the obtained ion. An ion supplying portion is mounted to supply an ionized gas into a space housing the object in which microbes can be propagated, and return the ionized gas to an ionization chamber. Further, a diffusing apparatus is provided to transform the ionic gas into bubbles so as to feed the bubbles into the water in the water reservoir.