Abstract:
The linear bearing (3) comprises a plurality of concentrically arranged springs (2), each spring (2) being designed as a plate spring with a fixing part (2a) and a bore (2c) arranged in the center (Z). Each spring (2) also has a spring arm (2b) which emerges from the fixing part (2a) and ends in an end section (2g). The end section (2g) has the bore (2c), and the bore (2c) is concentric to the fixing part (2a). Each spring (2) has a direction of movement (B) which runs perpendicular to the fixing part (2a), and the springs (2) are arranged one behind the other in the direction of movement (B). The spring arm (2b) has a spring arm section (2ba) which runs concentrically with the bore (2c) and which extends along an angular range (γ) between 100° and 270°, preferably along an angular range (γ) between 180° and 300°. The fixing part (2a) is at least partly annular, and the spring arm section (2ba) has, in a radial direction with respect to the bore (2c), a width (2k) which is at least five times greater than the thickness (2i) of the spring arm (2b). The width (2k) of the spring arm section (2ba) is designed such that the spring arm section extends relative to the annular fixing part (2a) and the end portion (2g) while forming a lateral gap (2d).
Abstract:
The present invention relates to a spring unit whose spring constant can be easily changed. The spring unit includes a plurality of wire springs each including a bent part formed in the middle of wire by bending, extending parts extending from the bent part, and end parts formed at ends of the extending parts. The wire springs are arranged side by side, and a deformed part protruding in a direction of arrangement of the wire springs is formed in one or more of the extending parts.
Abstract:
A vehicle suspension leaf spring assembly is arranged to be mounted in the longitudinal direction of the vehicle on opposite sides thereof. The leaf spring assembly has a first end, which is arranged for pivotal connection to a first bracket on the vehicle; and a second end, which is arranged for connection to a spring shackle on the vehicle. The leaf spring assembly is arranged to be connected to an axle extending transversely of the leaf spring assembly at a position intermediate the first and second ends of the leaf spring assembly. The leaf spring assembly includes two individual leaf springs arranged side-by-side with a predetermined spacing and extending between the first and second ends.
Abstract:
A curved spring includes one and another end parts configured to approach and separate relative to each other in an approaching/separating direction and plural beam parts that bend between the one end part and the other end part and extend in an extending direction. The plural beam parts are arranged in a width direction orthogonal to the approaching/separating direction. At least one combination of adjacent beam parts among combinations of the plural beam parts includes an outer side beam part having a width greater than a width of an inner side beam part in the width direction. The outer side beam part has a length less than a length of the inner side beam part in the approaching/separating direction. The one and the other end parts and at least one beam part of the plural beam parts are integrally molded on a shared plane by a synthetic resin.
Abstract:
The present invention provides a shock absorber with compliant members. Shock absorption is provided by the bending and rebound of curved, flexible arms. The deflection and the damping capabilities of the shock absorber are determined by the dimensions, curvature, and material modulus of elasticity of these compliant members. The shock absorber with compliant members technology may be applied to a bicycle front fork shock absorber and a rear shock absorber, both described herein. The benefits of a shock absorber with compliant members are that it is light-weight, it is simple in design, it has few movable joints, it can be designed to have precise flexion and damping characteristics, and it is resilient in harsh conditions.
Abstract:
The invention relates to a support structure and support module, for instance for use in a lithography system, comprising a frame and a support for supporting a load, wherein said support is moveable relative to said frame, said support structure further comprising a force compensation spring assembly connecting said support to said frame for at least partially supporting said support and/or said load, wherein said force compensation spring assembly comprises a first spring having a negative stiffness characteristic over a predefined range of motion of said spring, and a second spring having a positive stiffness.
Abstract:
A leaf spring assembly includes a main stage and a second stage. The main stage has at least one leaf, which is a steel leaf. The second stage has a composite leaf. The second stage is operatively attached to, and aligned with, the main stage.
Abstract:
The present disclosure provides a spring system comprising at least one bilaterally tapered flexion spring and a spring interface coupled to the at least one bilaterally tapered flexion spring.
Abstract:
A user-selectable force conversion apparatus includes a first and a second connecting member that are pivotally connected to each other between a sliding member and a fixed member. The apparatus also includes a leaf spring holder for removably retaining one or more leaf springs and loading the second connecting member with a substantially linear force response of the leaf springs. A user may change the combination of leaf springs and/or vary a length ratio for the first and second connecting members and thereby change the force response of the apparatus. Movement of the sliding member by the mechanical input may convert the substantially linear force response of the leaf springs to a user-selected force response for the mechanical input. A corresponding method is also disclosed.
Abstract:
A spring is formed of a relatively thin sheet of spring material, which is constricted and held in place at each end forming a bell curve being located between two substantially planar members. As additional compressive force is applied in the vertical direction, the curve then compresses and starts to form sine waves. In an improved embodiment of the present invention, the sine wave spring is formed in a wedge shape, so that it is gradually taller and more progressive. This embodiment has been tested for use as a trailer spring with positive results. This wedge-shaped sine wave spring provides even more advantages over the Prior Art. The wedge-shaped prototype illustrates also how the present invention may be expanded to other shapes, in order to alter the spring characteristics, and also for packaging and other concerns.