Abstract:
Stage I Group 1 metal/porous metal oxide compositions or Stage II Group 1 metal/porous metal oxide compositions are shown to be useful to remove impurities and act as drying agents for various types of solvents and for olefinic monomers used in anionic polymerizations. One important advantage of these compositions is their ability to dry simultaneously solvent and monomers, without inducing a significant polymerization of the latter. Another important characteristic is the capacity of the compositions to be totally inactive toward conventional anionic polymerization which allows them to be left in situ during the polymerization itself.
Abstract:
Disclosed herein is a process for producing isoprene that includes reacting a mixed C4 metathesis feed stream comprising isobutylene and at least one of 1-butene and 2-pentene in a first metathesis reactor in the presence of a first metathesis catalyst under conditions sufficient to produce an intermediate product stream comprising at least 30 wt. % 2-methyl-2-pentene based upon the olefin content of fresh feed in the mixed C4 feed stream, and at least one of ethylene and propylene, separating the 2-methyl-2-pentene, subjecting the separated 2-methyl-2-pentene to pyrolysis to produce a reaction product stream comprising isoprene, and separating the isoprene into an isoprene product stream using fractionation. A system used in producing isoprene is also disclosed.
Abstract:
A method for the dehydrogenation of hydrocarbons to alkenes, such as n-pentene to piperylene and n-butane to butadiene at pressures less than atmospheric utilizing a dehydrogenation catalyst are disclosed. Embodiments involve operating the dehydrogenation reactor at a pressure of 1,000 mbar or less.
Abstract:
For example, a separation and purification apparatus having an extractive distillation tower 4 for separating and purifying butadiene, impurity concentration sensors 32, 34 for detecting the concentrations of specific impurities other than butadiene, a target material concentration sensor for detecting the concentration of butadiene in the extractive distillation tower, and a differential pressure sensor 30 for detecting the differential pressure between the top and bottom of the extractive distillation tower 4 and a separation and purification method. The method calculates a concentration of a specific impurity after a predetermined time, a concentration of butadiene at the top, and a forecasted value of the differential pressure between the top and bottom based on the sensors and controls operations based on the forecasted values by a concentration predictive control means 60. It controls a feedstock flow rate control valve 21a controlling the rate of feedstock fed to the extractive distillation tower 4, a load detecting means 61 for detecting the load of the extractive distillation tower, and a feedstock flow rate control valve 21a by a load control means 62 in accordance with detection values detected by the load detecting means 61.
Abstract:
A process is described for obtaining, from an “FCC” initial C5 fraction, a final C5 fraction which is enriched with isoprene and purified and usable for the selective polymerization of isoprene. A process is also described for obtaining an isoprene homopolymer from a polymerization medium comprising isoprene and at least one methyl butene, such as said “FCC” C5 fraction which is enriched with isoprene and purified. The process of obtaining the final fraction from the initial C5 fraction includes: a catalytic hydrogenation reaction of said initial C5 fraction by a palladium-based catalyst, which produces an intermediate C5 fraction comprising n-pentenes in a mass ratio which is less than 0,1% and methyl butanes; a dehydrogenation reaction applied to the intermediate C5 fraction, which includes methyl butanes to produce the final fraction, and purification of the final fraction to obtain a purified fraction which is practically devoid of disubstituted alkynes, true alkynes and cyclopentadiene, and the mass fraction of the methyl butenes in the intermediate fraction is
Abstract:
Disclosed herein is a method for inhibiting the premature polymerization of ethylenically unsaturated monomers comprising adding to said monomers an effective amount of at least one inhibitor selected from the group consisting of C-nitrosoaniline and quinone imine oxime compounds.Also disclosed is a composition of matter comprising: A) an ethylenically unsaturated monomer and B) an effective inhibiting amount, sufficient to prevent premature polymerization during distillation or purification of said ethylenically unsaturated monomer, of at least one inhibitor selected from the group consisting of C-nitrosoaniline and quinone imine oxime compounds used together with an effective amount of oxygen or air to enhance the inhibiting activity of said inhibitor.
Abstract:
Disclosed herein is a method for inhibiting the premature polymerization of ethylenically unsaturated monomers comprising adding to said monomers an effective amount of at least one inhibitor selected from the group consisting of C-nitrosoaniline and quinone imine oxime compounds. Also disclosed is a composition of matter comprising: A) an ethylenically unsaturated monomer and B) an effective inhibiting amount, sufficient to prevent premature polymerization during distillation or purification of said ethylenically unsaturated monomer, of at least one inhibitor selected from the group consisting of C-nitrosoaniline and quinone imine oxime compounds used together with an effective amount of oxygen or air to enhance the inhibiting activity of said inhibitor.
Abstract:
Disclosed herein is a method for inhibiting the premature polymerization of ethylenically unsaturated monomers comprising adding to said monomers an effective amount of at least one inhibitor selected from the group consisting of C-nitrosoaniline and quinone imine oxime compounds. Also disclosed is a composition of matter comprising: A) an ethylenically unsaturated monomer and B) an effective inhibiting amount, sufficient to prevent premature polymerization during distillation or purification of said ethylenically unsaturated monomer, of at least one inhibitor selected from the group consisting of C-nitrosoaniline and quinone imine oxime compounds used together with an effective amount of oxygen or air to enhance the inhibiting activity of said inhibitor.
Abstract:
The present invention relates to a process for separating the isoprene, 1,3-pentadiene and dicyclopentadiene from a C5 cuts, comprising dimerization of the cyclopentadiene and selective catalytic hydrogenation. The second extractive rectification step can be omitted, because the alkynes are removed through selective catalytic hydrogenation prior to the extractive rectification. As a result, the solvent-recovering units can be simplified, and thus the process as a whole can be optimized. Correspondingly, the investment and energy consumption, the operation cost, and finally the production cost can be substantially reduced.
Abstract:
It has been discovered that the polymerization of vinyl aromatic compounds, such as styrene, may be inhibited by the addition of a composition that contains a hindered hydroxylamine, and, optionally, a synergist together with the hindered hydroxylamine. In one embodiment of the invention, the hindered N,N-disubstituted hydroxylamine has the formula: [(R1R2R3)C]2N—OH where R1, R2, and R3 are independently selected from the group consisting of hydrogen, straight, branched or cyclic alkyl, aryl, aralkyl, and alkaryl moieties; where no more than two of R1, R2, and R3 on each C can be hydrogen at a time; where one or more of R1, R2, and R3 on one C may be joined to a R1, R2, and R3 on the other C to form a cyclic moiety selected from the group consisting of alkylene, and aralkylene moieties; where any two of the R1, R2, and R3 on any one C may be joined together to form a cycloalkyl; where any of the above definitions of R1, R2, and R3 may contain one or more heteroatoms selected from the group consisting of N, O and S; and where the total number of carbon atoms in the hindered N,N-disubstituted hydroxylamine ranges from 6 to 70. Optional synergists may include alkyl-substituted hydroxyarenes such as 2,5-di-tert-butylhydroquinone, and hydrogen transfer agents such as 1,2,3,4-tetrahydronaphthalene; and the like, and mixtures thereof.