摘要:
A wireless communication receiver improves signal impairment correlation estimation in MIMO/MISO systems by considering different transmit power allocations and different transmit antenna power distributions in its impairment correlation calculations. The receiver may be implemented in according to a variety of architectures, including, but not limited to, Successive Interference Cancellation (SIC) Generalized RAKE (G-RAKE), Joint Detection (JD) G-RAKE, and Minimum Mean Squared Error (MMSE) G-RAKE. Regardless of the particular receiver architecture adopted, the improved impairment correlations may be used to calculate improved (RAKE) signal combining weights and/or improve channel quality estimates for reporting by receivers operating in Wideband CDMA (W-CDMA) systems transmitting HSDPA channels via MIMO or MISO transmitters. A transmitter may be configured to facilitate impairment correlation determinations by wireless communication receivers operating in MIMO/MISO environments, by signaling one or more values, e.g., data-to-pilot signal transmit power ratios and/or transmit antenna power distributions for the data and pilot signals.
摘要:
Exemplary combining weight generation is based on estimating received signal impairment correlations using a weighted summation of interference impairment terms, such as an interference correlation matrix associated with a transmitting base station, and a noise impairment term, such as a noise correlation matrix, the impairment terms scaled by fitting parameters. The estimate is updated based on adapting the fitting parameters responsive to measured signal impairment correlations. The interference matrices are calculated from channel estimates and delay information, and knowledge of the receive filter pulse shape. Instantaneous values of the fitting parameters are determined by fitting the impairment correlation terms to impairment correlations measured at successive time instants and the fitting parameters are adapted at each time instant by updating the fitting parameters based on the instantaneous values.
摘要:
A Generalized Rake (G-Rake) receiver is adapted for Golden code reception in a CDMA system. Signals transmitted by two or more transmit antennas are received at two or more receiver antennas. The signal from each receiver antenna is despread, and channel estimation is performed for each transmit antenna. G-Rake combining weights are calculated based on impairment correlation across G-Rake fingers and channel coefficients corresponding to each transmit antenna. The despread values from each symbol period are combined over a plurality of symbol periods based on the combining weights. The combined values are processed using coefficients derived from the Golden number to generate a set of decision variables, and the Golden encoded symbols are jointly detected from the decision variables. In some embodiments, spherical decoding and triangularization significantly simplify the decoding problem formulation.
摘要:
In a blind spreading factor detecting receiver, the amplitude of a desired signal term is decoupled from the spreading factor hypothesis for that signal. Furthermore, the amplitude of the desired signal and the variance of an associated impairment term are estimated, and the estimates used to form a spreading factor hypothesis. Additionally, in one or more embodiments, a suboptimal detector does not rely on estimates of the amplitude of the desired signal or variance of the impairment term. Rather, the detector relies on scaled values that are partially despread using an initial spreading factor not greater than the smallest possible spreading factor used by the signal of interest, and combined using combining weights from a Rake or G-Rake processor, wherein the scaling factor is chosen to yield a unity ratio between the signal amplitude and noise variance after scaling.
摘要:
A wireless communication device or system generates transmit power control feedback for a received power control channel by determining a command error rate (CER), or by identifying a target signal quality for the power control channel according to a defined signal-quality-to-CER mapping function. Generally, the power control channel does not include error-coded data to use for CER estimation. However, in one embodiment, the channel does include known reference bits that are evaluated for CER estimation, with the estimated CER used to set the signal quality target for inner loop power control. In other embodiments, a computed reception error probability is used to identify a CER estimate according to a defined probability-to-CER mapping function. By way of non-limiting example, these embodiments may be used to provide power control feedback for power control commands transmitted on a Fractional Dedicated Physical Channel in WCDMA systems.
摘要:
A method and apparatus for generating channel quality information, such as may be used for transmit link adaptation, provide different operating modes, such as a first mode that may be used when propagation channel estimates are not reliable, and a second mode that may be used when the propagation channel estimates are reliable. In one or more embodiments, channel quality information is generated using receiver performance information that characterizes receiver performance in terms of a defined channel quality metric, e.g., supported data rates, for different values of receiver input signal quality over a range of propagation channel realizations. Channel quality information can be generated by selecting channel quality metrics according to receiver input signal quality and a desired probability of meeting a defined performance requirement over a range of propagation channel realizations, or by selecting channel quality metrics according to receiver input signal quality and particularized propagation channel realizations.
摘要:
Teachings presented herein offer reduced computational complexity for detecting a plurality of symbol blocks, even for symbol blocks that comprise the combination of a relatively large number of symbols. The teachings perform two or more stages of detection assistance to successively reduce the number of candidate combinations of symbols to be considered for a symbol block when detecting the plurality of symbol blocks. In particular, the teachings identify a reduced set of candidate symbol combinations for at least one symbol block in the plurality of symbol blocks, and then jointly detect each of one or more distinct groups of symbols in the symbol block to determine from that reduced set a final reduced set of candidate symbol combinations. Detection of the plurality of symbol blocks limits the candidate combinations of symbols considered for a symbol block to the final reduced set of candidate symbol combinations identified for that symbol block.
摘要:
Detecting a symbol of interest comprises despreading a received signal to obtain despread values corresponding to the symbol of interest and to one or more interfering symbols, combining the despread values to generate combined values for the symbol of interest and the interfering symbols, computing spreading waveform correlations between the spreading waveform for the symbol of interest and the spreading waveforms for the interfering symbols, computing interference rejection terms representing the interference present in the combined value for the symbol of interest attributable to the interfering symbols based on the spreading waveform correlations, and generating an estimate of the symbol of interest by combining the combined values with the interference rejection terms. The interference rejection terms are computed by scaling the spreading waveform correlations by corresponding signal powers and compensating the estimates for noise. This provides a robust interference model that avoids numerical problems associated with conventional joint detection.
摘要:
A parametric form of G-Rake and chip equalization for closed-loop transmit diversity is provided, that accounts for impairment correlation between transmit antennas. In a closed-loop transmit diversity system, the base station transmits a signal from two or more antennas, using one of a predetermined set of relative phase offsets at one of the antennas. The parametric estimation of the impairment or data covariance is performed by summing terms, including a term for each possible phase offset. The terms are weighted by fitting parameters. The fitting parameters are jointly solved by fitting the impairment or data covariance estimate to a measured impairment or data covariance. In another aspect, a measured impairment covariance is formed by exploiting a special relationship between the pilot channels of the different transmit antennas.
摘要:
The computational complexity required for interference suppression in the reception of wireless communications from multiple users is reduced by sharing information among the users. In some situations, information indicative of a statistical characteristic of the interference is shared among the users. Delays used to produce the interference statistic information are determined based on rake finger delays employed by the users. In some situations, a parameter estimate that is used to calculate combining weights for the users is shared among the users.