Abstract:
Transmit power for an access point is controlled based on information received by the access point. For example, an access point may employ one or more algorithms that use messages received from nearby access terminals to maintain an acceptable tradeoff between providing an adequate coverage area for access point transmissions and mitigating interference that these transmissions cause at nearby access terminals. Here, the access point may employ a network listen-based algorithm upon initialization of the access terminal to provide preliminary transmit power control until sufficient information is collected for another transmit power control algorithm (e.g., an access terminal assisted algorithm). Also, the access terminal may employ an active access terminal protection scheme to mitigate interference the access point may otherwise cause to a nearby access terminal that is in active communication with another access point.
Abstract:
Described herein are techniques for reducing interference to non-cellular communications on an unlicensed band by a network entity sending/receiving cellular communications on the unlicensed band. For example, the technique may involve accessing a list of channels for cellular communication on the unlicensed band, the list having the channels in an order of priority for reducing interference to non-cellular communication on the unlicensed band. The technique may involve determining an interference criteria for a received signal, the interference criteria being based at in part on at least one of a received signal strength indicator (RSSI) or a duty cycle of the received signal. The technique may involve going through, in the order of priority, each channel in the list to identify a first channel that satisfies the interference criteria.
Abstract:
Low-power access points are used to identify traffic congestion zones in a network. The low-power access points collect metrics that are used identify high demand areas. The locations of the traffic congestion zones are then determined based on the locations of the low-power access points that identified high demand. In some embodiments, metrics are collected and processed in a distributed fashion at each femtocell. Each femtocell then outputs an indication of high demand in the area and/or takes action to address the high demand at an identified traffic congestion zone. Alternatively, the femtocells may collectively take action to address the high demand at one or more identified traffic congestion zones. In other embodiments, metrics may be collected from the femtocells at a central entity and processed to identifying any traffic congestion zones near the femtocells, whereby the central entity takes appropriate action to address the high demand.
Abstract:
Transmissions by a first access point (e.g., a femto cell) are restricted upon detecting an access terminal in the vicinity of the first access point in the event the access terminal is communicating with a second access point (e.g., a macro cell). Upon detection of such an access terminal, the access terminal restricts transmission (e.g., beacon transmission) on a downlink carrier frequency on which the access terminal is actively receiving information from the second access point. This restriction of transmission by the access point may involve, for example, temporarily reducing transmit power, reducing the periodicity of transmission, or ceasing transmission.
Abstract:
Methods and apparatuses are provided that facilitate providing access point measurements to restricted access points. Restricted access points can lessen restrictions to allow devices to register with the restricted access point for providing measurements thereto. Additionally or alternatively, access point measurements can be provided to a minimization of drive tests (MDT) server for providing to the restricted access points. Thus, restricted access points can obtain the access point measurements for performing enhanced interference management or other functionality based at least in part on the measurements.
Abstract:
Interference that occurs during wireless communication may be managed by hybrid time reuse. A method, apparatus amend medium of communication determines one or more time reuse patterns of respective one or more unplanned access points. A second time reuse pattern that is less interfering with the one or more time reuse patterns is selected. Signals are transmitted according to the second time reuse pattern from a second unplanned access point to an associated access terminal.
Abstract:
A base station in a cellular wireless communications system uses one or more control algorithms to control a transmission pattern of a 1xRTT or DO discovery beacon. The transmission pattern enables access terminals using any one of multiple wake-up periods and wake-up offsets to discover all macrocell frequencies in a finite amount of time. In addition, for base stations allocating a single transmit chain to both 1xRTT and DO beacons, the transmission pattern enables a definite maximum discovery time for both 1xRTT and DO beacons for all access terminals entering the base station coverage.
Abstract:
Systems and methods for dynamically adjusting the transmission time interval (TTI) for a communications system are presented. The described aspects provide for dynamically adjusting the TTI in a communication session between a base station or nodeB and a wireless device or user equipment between a shorter TTI, which can provide increased data throughput and lower power consumption, and a longer TTI, which can provide more rugged communication link connections. By dynamically adjusting the TTI, the communications link can be optimized for the given communication channel conditions. Determinations, based on indicia related to the communications system conditions, can be employed in dynamic TTI adjustment. These determinations can be formed centrally at the Radio Network Controller (RNC), at the RNC supplemented with user equipment (UE) available information, or formed in a distributed manner between the RNC and UE across a communications system.
Abstract:
Techniques for admitting user equipments (UEs) to wireless systems are disclosed. UEs may be assigned priorities for admission to a given wireless system. The UEs may then be admitted to the wireless system based on the priorities of the UEs for the wireless system. In one design, a UE may be identified for admission to a first wireless system among a plurality of wireless systems. Attributes (e.g., capabilities) of the UE for the plurality of wireless systems may be determined. An admission priority of the UE for the first wireless system may be determined based on the attributes of the UE for the plurality of wireless systems. Whether to admit the UE to the first wireless system may be determined based on the admission priority of the UE for the first wireless system and possibly the current resource usage of the first wireless system.
Abstract:
Systems and methodologies are described herein that facilitate improved cell search and selection in a wireless communication system. For example, a terminal as described herein can utilize one or more Closed Subscriber Group (CSG)-specific offset and/or hysteresis parameters as described herein to increase the amount of time on which the terminal is allowed to camp on a desirable cell. Additionally, specialized reselection timing can be employed as described herein to increase a delay associated with selecting a Home Node B (HNB) or Home Evolved Node B (HeNB) cell, thereby reducing power consumption associated with rapid cell reselection operations in a densely populated network environment. Further, a two-step reselection process can be performed as described herein in the context of selecting a frequency for cell reselection, thereby mitigating the effects of rapid reselection between cells and/or frequencies due to CSG cell prioritization.