Abstract:
Methods and apparatus, including computer program products, are provided in one aspect there is provided a method. The method may include detecting, at a first node, an event; generating, at the first node, a message in response to the detected event; and sending, at the first node, the message to at least a second node to enable the second node to determine at least one of a reliability or an importance of the message. Related apparatus, systems, methods, and articles are also described.
Abstract:
Systems and techniques for synchronization between in-coverage and out-of coverage user devices. A base station configures in-coverage and out-of coverage synchronization signals and configures user devices to recognize synchronization signals as in-coverage or out-of-coverage. An in-coverage device furnishes an in-coverage synchronization signal upon detection of an out-of coverage signal, and may continue to furnish the signal upon continued detection of an out-of-coverage signal that is not synchronized to the network. An out-of-coverage device may receive and synchronize to an in-coverage signal if available, or an out-of-coverage signal if available, or may generate and transmit its own out-of-coverage signal if no in-coverage or out-of-coverage signal is available. Signals may include rank information to indicate relay sequence information, and user devices may be configured to respond to signals based on the rank information—such as favoring a signal whose rank indicates that the signal represents a lower relay order number.
Abstract:
In accordance with an example embodiment of the present invention, there is provided an apparatus, comprising at least one processing core configured to determine an opportunity for device-to-device, D2D, communication, and at least one transmitter configured to cause transmitting of a D2D communication request, wherein the D2D communication request at least one of comprises a radio resource control signaling message and comprises an indication of a type of D2D communication that is requested. The indicated type may comprise D2D communication with no fallback to cellular connectivity, wherein such a D2D communication can be established without involving a core network, CN.
Abstract:
Device discovery may be important in a variety of communication systems including, for example, wireless communication systems. Thus, certain embodiments may provide a device to device beacon design that may provide for efficient interference management and resource allocation. For example, a method may include preparing a proximity communication request including information about a device to device communication state of a discovered user equipment or resource usage of the discovered user equipment. The method may also include transmitting the proximity communication request to a base station.
Abstract:
Methods, apparatuses, and computer program products for efficient signaling in a system supporting D2D over the air discovery are provided. One method may include receiving at a user equipment an indication of screening policies and related parameters for beacon signals received from other devices. The method may then include detecting the beacon signals and applying the screening policies and related parameters to determine which of the detected beacon signals should be included in a report. The method may also include leaving out from the report any of the detected beacon signals that do not meet the screening policies' requirements and/or criteria, and transmitting the report from the user equipment to a network node.